本文介绍了将JavaScript字符串传递给编译为WebAssembly的Rust函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有这个简单的Rust函数:

I have this simple Rust function:

#[no_mangle]
pub fn compute(operator: &str, n1: i32, n2: i32) -> i32 {
    match operator {
        "SUM" => n1 + n2,
        "DIFF" => n1 - n2,
        "MULT" => n1 * n2,
        "DIV" => n1 / n2,
        _ => 0
    }
}

我正在成功将此编译成WebAssembly,但不要设法将运算符参数从JS传递给Rust。

I am compiling this to WebAssembly successfully, but don't manage to pass the operator parameter from JS to Rust.

调用Rust函数的JS行看起来像这样:

The JS line which calls the Rust function looks like this:

instance.exports.compute(operator, n1, n2);

operator 是JS String n1 n2 是JS Number s。

operator is a JS String and n1, n2 are JS Numbers.

n1 n2 正确传递,可以在编译函数内部读取,所以我猜问题是我如何传递字符串。我想它是作为从JS到WebAssembly的指针传递但是找不到有关它如何工作的证据或材料。

n1 and n2 are passed properly and can be read inside the compiled function so I guess the problem is how I pass the string around. I imagine it is passed as a pointer from JS to WebAssembly but can't find evidence or material about how this works.

我没有使用Emscripten并且想保留它是独立的(编译目标 wasm32-unknown-unknown ),但我看到它们将编译后的函数包装在 Module.cwrap 中,也许这可能会有所帮助?

I am not using Emscripten and would like to keep it standalone (compilation target wasm32-unknown-unknown), but I see they wrap their compiled functions in Module.cwrap, maybe that could help?

推荐答案

要在JavaScript和Rust之间传输字符串数据,你需要决定

To transfer string data between JavaScript and Rust, you need to decide


  1. 文本的编码:UTF-8(Rust native)或UTF-16(JS native)。

  2. Who将拥有内存缓冲区:JS(调用者)或Rust(被调用者)。

  3. 如何表示字符串数据和长度:NUL终止(C样式)或不同长度(Rust)风格)。

  4. 如果数据和长度是分开的,如何传达数据和长度。

  1. The encoding of the text: UTF-8 (Rust native) or UTF-16 (JS native).
  2. Who will own the memory buffer: the JS (caller) or Rust (callee).
  3. How to represent the strings data and length: NUL-terminated (C-style) or distinct length (Rust-style).
  4. How to communicate the data and length, if they are separate.



解决方案1 ​​



我决定:

Solution 1

I decided:


  1. 将JS字符串转换为UTF- 8,这意味着tha JS API是最合适的。

  2. 调用者应该拥有内存缓冲区。

  3. 要使长度为单独的值。

  4. 应该使用另一个结构和分配来保存指针和长度。

  1. To convert JS strings to UTF-8, which means that the TextEncoder JS API is the best fit.
  2. The caller should own the memory buffer.
  3. To have the length be a separate value.
  4. Another struct and allocation should be made to hold the pointer and length.

lib / src.rs

// Inform Rust that memory will be provided
#![feature(wasm_import_memory)]
#![wasm_import_memory]

// A struct with a known memory layout that we can pass string information in
#[repr(C)]
pub struct JsInteropString {
    data: *const u8,
    len: usize,
}

// Our FFI shim function
#[no_mangle]
pub unsafe extern "C" fn compute(s: *const JsInteropString, n1: i32, n2: i32) -> i32 {
    // Check for NULL (see corresponding comment in JS)
    let s = match s.as_ref() {
        Some(s) => s,
        None => return -1,
    };

    // Convert the pointer and length to a `&[u8]`.
    let data = std::slice::from_raw_parts(s.data, s.len);

    // Convert the `&[u8]` to a `&str`
    match std::str::from_utf8(data) {
        Ok(s) => real_code::compute(s, n1, n2),
        Err(_) => -2,
    }
}

// I advocate that you keep your interesting code in a different
// crate for easy development and testing. Have a separate crate
// with the FFI shims.
mod real_code {
    pub fn compute(operator: &str, n1: i32, n2: i32) -> i32 {
        match operator {
            "SUM"  => n1 + n2,
            "DIFF" => n1 - n2,
            "MULT" => n1 * n2,
            "DIV"  => n1 / n2,
            _ => 0,
        }
    }
}

构建非常重要用于WASM的C dylibs可帮助它们缩小尺寸。

It's important to build C dylibs for WASM to help them be smaller in size.

Cargo.toml

[package]
name = "quick-maths"
version = "0.1.0"
authors = ["An Devloper <[email protected]>"]

[lib]
crate-type = ["cdylib"]

对于它的价值,我在Node中运行此代码,而不是在浏览器中运行。

For what it's worth, I'm running this code in Node, not in the browser.

index。 js

const fs = require('fs-extra');
const { TextEncoder } = require('text-encoding');

// Allocate some memory.
const memory = new WebAssembly.Memory({ initial: 20, maximum: 100 });

// Connect these memory regions to the imported module
const importObject = {
  env: { memory }
};

// Create an object that handles converting our strings for us
const memoryManager = (memory) => {
  var base = 0;

  // NULL is conventionally at address 0, so we "use up" the first 4
  // bytes of address space to make our lives a bit simpler.
  base += 4;

  return {
    encodeString: (jsString) => {
      // Convert the JS String to UTF-8 data
      const encoder = new TextEncoder();
      const encodedString = encoder.encode(jsString);

      // Organize memory with space for the JsInteropString at the
      // beginning, followed by the UTF-8 string bytes.
      const asU32 = new Uint32Array(memory.buffer, base, 2);
      const asBytes = new Uint8Array(memory.buffer, asU32.byteOffset + asU32.byteLength, encodedString.length);

      // Copy the UTF-8 into the WASM memory.
      asBytes.set(encodedString);

      // Assign the data pointer and length values.
      asU32[0] = asBytes.byteOffset;
      asU32[1] = asBytes.length;

      // Update our memory allocator base address for the next call
      const originalBase = base;
      base += asBytes.byteOffset + asBytes.byteLength;

      return originalBase;
    }
  };
};

const myMemory = memoryManager(memory);

fs.readFile('./target/wasm32-unknown-unknown/release/quick_maths.wasm')
  .then(bytes => WebAssembly.instantiate(bytes, importObject))
  .then(({ instance }) => {
    const argString = "MULT";
    const argN1 = 42;
    const argN2 = 100;

    const s = myMemory.encodeString(argString);
    const result = instance.exports.compute(s, argN1, argN2);

    console.log(result);
  });



解决方案2



我决定:

Solution 2

I decided:


  1. 将JS字符串转换为UTF-8,这意味着 JS API是最合适的。

  2. 模块应该拥有内存缓冲区。

  3. 将长度设为单独的值。

  4. 使用 Box< String> 作为底层数据结构。这允许Rust代码进一步使用分配。

  1. To convert JS strings to UTF-8, which means that the TextEncoder JS API is the best fit.
  2. The module should own the memory buffer.
  3. To have the length be a separate value.
  4. To use a Box<String> as the underlying data structure. This allows the allocation to be further used by Rust code.

src / lib.rs

#![feature(repr_transparent)]

// Very important to use `transparent` to prevent ABI issues
#[repr(transparent)]
pub struct JsInteropString(*mut String);

impl JsInteropString {
    // Unsafe because we create a string and say it's full of valid
    // UTF-8 data, but it isn't!
    unsafe fn with_capacity(cap: usize) -> Self {
        let mut d = Vec::with_capacity(cap);
        d.set_len(cap);
        let s = Box::new(String::from_utf8_unchecked(d));
        JsInteropString(Box::into_raw(s))
    }

    unsafe fn as_string(&self) -> &String {
        &*self.0
    }

    unsafe fn as_mut_string(&mut self) -> &mut String {
        &mut *self.0
    }

    unsafe fn into_boxed_string(self) -> Box<String> {
        Box::from_raw(self.0)
    }

    unsafe fn as_mut_ptr(&mut self) -> *mut u8 {
        self.as_mut_string().as_mut_vec().as_mut_ptr()
    }
}

#[no_mangle]
pub unsafe extern "C" fn stringPrepare(cap: usize) -> JsInteropString {
    JsInteropString::with_capacity(cap)
}

#[no_mangle]
pub unsafe extern "C" fn stringData(mut s: JsInteropString) -> *mut u8 {
    s.as_mut_ptr()
}

#[no_mangle]
pub unsafe extern "C" fn stringLen(s: JsInteropString) -> usize {
    s.as_string().len()
}

#[no_mangle]
pub unsafe extern "C" fn compute(s: JsInteropString, n1: i32, n2: i32) -> i32 {
    let s = s.into_boxed_string();
    real_code::compute(&s, n1, n2)
}

mod real_code {
    pub fn compute(operator: &str, n1: i32, n2: i32) -> i32 {
        match operator {
            "SUM"  => n1 + n2,
            "DIFF" => n1 - n2,
            "MULT" => n1 * n2,
            "DIV"  => n1 / n2,
            _ => 0,
        }
    }
}

index .js

const fs = require('fs-extra');
const { TextEncoder } = require('text-encoding');

class QuickMaths {
  constructor(instance) {
    this.instance = instance;
  }

  difference(n1, n2) {
    const { compute } = this.instance.exports;
    const op = this.copyJsStringToRust("DIFF");
    return compute(op, n1, n2);
  }

  copyJsStringToRust(jsString) {
    const { memory, stringPrepare, stringData, stringLen } = this.instance.exports;

    const encoder = new TextEncoder();
    const encodedString = encoder.encode(jsString);

    // Ask Rust code to allocate a string inside of the module's memory
    const rustString = stringPrepare(encodedString.length);

    // Get a JS view of the string data
    const rustStringData = stringData(rustString);
    const asBytes = new Uint8Array(memory.buffer, rustStringData, encodedString.length);

    // Copy the UTF-8 into the WASM memory.
    asBytes.set(encodedString);

    return rustString;
  }
}

async function main() {
  const bytes = await fs.readFile('./target/wasm32-unknown-unknown/release/quick_maths.wasm');
  const { instance } = await WebAssembly.instantiate(bytes);
  const maffs = new QuickMaths(instance);

  console.log(maffs.difference(100, 201));
}

main();






请注意,此过程可用于其他类型。您只是必须决定如何将数据表示为双方同意然后发送的字节集。


Note that this process can be used for other types. You "just" have to decide how to represent data as a set of bytes that both sides agree on then send it across.

另请参阅:




  • / /




  • Using the WebAssembly JavaScript API
  • TextEncoder API
  • Uint8Array / Uint32Array / TypedArray
  • WebAssembly.Memory
  • Hello, Rust! — Import memory buffer
  • How to return a string (or similar) from Rust in WebAssembly?

这篇关于将JavaScript字符串传递给编译为WebAssembly的Rust函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-29 07:41