本文介绍了为什么Haskell列表更有效率,如果它是关联的的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在学习Haskell的基础知识,并且遇到很多教程,指出如果使用++从左到右构造列表比从右向左更有效。但我似乎无法理解为什么。



例如,为什么这个

  a ++(b ++(c ++(d ++(e ++ f))))



 ((((a ++ b)++ c)++ d)++ e)++ f 


解决方案

直至列表和 ++ 被实现。你可以想象列表正在被实现,就像

 数据List a = Empty |缺点a(列表a)

只要将 [] 与空和:与缺点。这是Haskell中单链表的一个非常简单的定义。单连接列表的连接时间为 O(n),其中 n 是第一个列表的长度。为了理解为什么,回想一下,对于链表,你持有对头或第一个元素的引用,为了执行任何操作,你必须沿着列表走下去,检查每个值是否有后继。



因此,对于每个列表级联,编译器必须遍历第一个列表的整个长度。如果你有清单 a , b , c ,和 d ,长度 n1 , n2 , n3 和 n4 ,那么对于表达式



<$ p $ ($ a






$ >它先走下 a 构造 a ++ b ,然后将结果存储为 x ,自 a 具有 n1 n1 code>元素。您剩下的

 (x ++ c)++ d 

现在编译器向下遍历 x 来构造 x ++ c ,然后在 n1 + n2 步骤中存储这个结果为 y a 和 b 这次)。你留下了

  y ++ d 

现在 y 被执行,以 n1 + n2 + n3 步骤,共计 n1 +(n1 + n2)+(n1 + n2 + n3)= 3n1 + 2n2 + n3 步骤。



对于表达式

  a ++(b ++(c ++ d ))

编译器从内部圆括号开始,构造 c ++ d - > x in n3 步骤,导致

  a ++(b ++ x)

然后 b ++ x - > y 在 n2 步骤中,导致

  a ++ y 

终于在 n1 步骤,总步数为 n3 + n2 + n1 ,这肯定少于 3n1 + 2n2 + n3 。


I'm learning the basics of Haskell, and come across many tutorials saying that if a list is constructed from left to right using ++ is more efficient than from right to left. But I can't seem to understand why.

For example, why this

a ++ (b ++ (c ++ (d ++ (e ++ f))))

is more efficient than

((((a ++ b) ++ c) ++ d) ++ e) ++ f
解决方案

It comes down to how lists and ++ is implemented. You can think of lists being implemented like

data List a = Empty | Cons a (List a)

Just replace [] with Empty and : with Cons. This is a very simple definition of a singly linked list in Haskell. Singly linked lists have a concatenation time of O(n), with n being the length of the first list. To understand why, recall that for linked lists you hold a reference to the head or first element, and in order to perform any operation you have to walk down the list, checking each value to see if it has a successor.

So for every list concatenation, the compiler has to walk down the entire length of the first list. If you have the lists a, b, c, and d with the lengths n1, n2, n3, and n4 respectively, then for the expression

((a ++ b) ++ c) ++ d

It first walks down a to construct a ++ b, then stores this result as x, taking n1 steps since a has n1 elements. You're left with

(x ++ c) ++ d

Now the compiler walks down x to construct x ++ c, then stores this result as y in n1 + n2 steps (it has to walk down elements of a and b this time). you're left with

y ++ d

Now y is walked down to perform the concatenation, taking n1 + n2 + n3 steps, for a total of n1 + (n1 + n2) + (n1 + n2 + n3) = 3n1 + 2n2 + n3 steps.

For the expression

a ++ (b ++ (c ++ d))

The compiler starts at the inner parentheses, construction c ++ d -> x in n3 steps, resulting in

a ++ (b ++ x)

Then b ++ x -> y in n2 steps, resulting in

a ++ y

Which is finally collapsed in n1 steps, with a total number of steps as n3 + n2 + n1, which is definitely fewer than 3n1 + 2n2 + n3.

这篇关于为什么Haskell列表更有效率,如果它是关联的的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-15 04:25