问题描述
这是从算法的书的任务。
This is task from algorithms book.
的事情是,我完全不知道从何说起!
The thing is that I completely don't know where to start!
Trace the following non-recursive algorithm to generate the binary reflexive
Gray code of order 4. Start with the n-bit string of all 0’s.
For i = 1, 2, ... 2^n-1, generate the i-th bit string by flipping bit b in the
previous bit string, where b is the position of the least significant 1 in the
binary representation of i.
所以我知道格雷code 1位应该是 0 1
2 00 01 11 10
等。
许多问题
1)我知道,当n = 1,我可以用 0 1
?
1) Do I know that for n = 1 I can start of with 0 1
?
2)我应该怎样理解开始全部为0的N位串?
2) How should I understand "start with the n-bit string of all 0's"?
3)previous位串?其中字符串为previous? previous指从较低的n位? (例如对于n = 2,previous是从一个n = 1)?
3) "Previous bit string"? Which string is the "previous"? Previous means from lower n-bit? (for instance for n=2, previous is the one from n=1)?
4)如何甚至转换1位串为2位的字符串,如果只有操作有翻转?
4) How do I even convert 1-bit strings to 2-bit strings if the only operation there is to flip?
这混淆了我很多。唯一的人的方法,我至今不解的是:取集从较低n位,复制它们,反转第二盘,加0的每个元素在第1套,加1的做在第二集中的每个元素。完成(例如: 0 1
- > 0 1 | 0 1
- > 0 1 | 1 0
- > 00 01 | 11 10
- > 11 01 11 10
完成。
This confuses me a lot. The only "human" method I understand so far is: take sets from lower n-bit, duplicate them, invert the 2nd set, add 0's to every element in 1st set, add 1's do every elements in 2nd set. Done (example: 0 1
-> 0 1 | 0 1
-> 0 1 | 1 0
-> 00 01 | 11 10
-> 11 01 11 10
done.
感谢您的帮助
推荐答案
回答所有四个你的问题是,这种算法不以的较低n值
。所有字符串它生成具有相同的长度,而第i
(对于我
= 1,...,从产生2 -1)字符串(I-1)个
之一。
The answer to all four your questions is that this algorithm does not start with lower values of n
. All strings it generates have the same length, and the i-th
(for i
= 1, ..., 2-1) string is generated from the (i-1)-th
one.
下面是对于n = 4的拳头几个步骤:
Here is the fist few steps for n = 4:
开始以G 0 = 0000
要生成摹 1 ,翻转 0个
G中 0 位,如 0
是最低显著 1
中的二进制再presentation位置1 = 0001 B 。摹 1 = 0001
。
To generate G, flip 0-th
bit in G, as 0
is the position of the least significant 1
in the binary representation of 1 = 0001. G = 0001
.
要生成摹,翻转 1-ST
G中 1 ,位为 1
是最低显著 1
中的二进制再presentation位置2 = 0010 B 。摹 = 0011
。
To generate G, flip 1-st
bit in G, as 1
is the position of the least significant 1
in the binary representation of 2 = 0010. G = 0011
.
要生成摹 3 ,翻转 0个
G中位,如 0
是最低显著 1
中的二进制再presentation位置3 = 0011 B 。摹 3 = 0010
。
To generate G, flip 0-th
bit in G, as 0
is the position of the least significant 1
in the binary representation of 3 = 0011. G = 0010
.
要生成摹 4 ,翻转 2-ND
G中 3 位,如 2
是最低显著 1
中的二进制再presentation位置4 = 0100 B 。摹 4 = 0110
。
To generate G, flip 2-nd
bit in G, as 2
is the position of the least significant 1
in the binary representation of 4 = 0100. G = 0110
.
要生成摹 5 ,翻转 0个
G中 4 位,如 0
是最低显著 1
中的二进制再presentation位置5 = 0101 B 。摹 5 = 0111
。
To generate G, flip 0-th
bit in G, as 0
is the position of the least significant 1
in the binary representation of 5 = 0101. G = 0111
.
这篇关于非递归灰色code算法的理解的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!