本文介绍了在python中的pandas中匹配数据框之间的行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有两个数据框

df1,

 Names
 one two three
 Sri is a good player
 Ravi is a mentor
 Kumar is a cricketer

df2,

 values
 sri
 NaN
 sri, is
 kumar,cricketer

我正在尝试在df1中获取包含df2中所有项目的行

I am trying to get the row in df1 which contains the all the items in df2

我的预期输出是

 values             Names
 sri                Sri is a good player
 NaN
 sri, is            Sri is a good player
 kumar,cricketer    Kumar is a cricketer

我尝试过,df1["Names"].str.contains("|".join(df2["values"].values.tolist()))

但是我无法达到预期的输出,因为它具有(,").请帮助

but I cannot achieve my expected output as it has (","). Please help

推荐答案

使用集合

s1 = df1.Names.dropna()
s1.loc[:] = [set(x.lower().split()) for x in s1.values.tolist()]
a1 = s1.values

s2 = df2['values'].dropna()
s2.loc[:] = [set(x.replace(' ', '').lower().split(',')) for x in s2.values.tolist()]
a2 = s2.values

i = np.column_stack([a1 >= a2[:, None], [True] * len(a2)]).argmax(1)

df2.assign(Names=pd.Series(
    np.append(df1.Names.values, np.nan)[i], s2.index
))

            values                 Names
0              sri  Sri is a good player
1              NaN                   NaN
2          sri, is  Sri is a good player
3  kumar,cricketer  Kumar is a cricketer

这篇关于在python中的pandas中匹配数据框之间的行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-26 19:32