问题描述
当尝试在使用numba编译的函数定义中使用np.empty
并打开nopython=True
以确保优化键入有效时,遇到了这个奇怪的错误.
I ran into this weird error when trying to use np.empty
in a function definition compiled with numba, and turning on nopython=True
to make sure optimized typing is in effect.
这很奇怪,因为numba声称使用前两个参数支持np.empty
,而我只使用前两个参数(我认为正确吗?),所以我不知道为什么它输入不正确.
It's weird because numba claims to support np.empty
with the first two arguments, and I am only using the first two arguments (correctly I think?), so I don't know why it's not typing correctly.
@jit(nopython=True)
def empty():
return np.empty(5, np.float)
在ipython笔记本中定义上述功能后,
After defining the above function in an ipython notebook,
empty()
给出以下错误消息:
---------------------------------------------------------------------------
TypingError Traceback (most recent call last)
<ipython-input-88-927345c8757f> in <module>()
----> 1 empty()
~/.../lib/python3.5/site-packages/numba/dispatcher.py in _compile_for_args(self, *args, **kws)
342 raise e
343 else:
--> 344 reraise(type(e), e, None)
345 except errors.UnsupportedError as e:
346 # Something unsupported is present in the user code, add help info
~/.../lib/python3.5/site-packages/numba/six.py in reraise(tp, value, tb)
656 value = tp()
657 if value.__traceback__ is not tb:
--> 658 raise value.with_traceback(tb)
659 raise value
660
TypingError: Failed at nopython (nopython frontend)
Invalid usage of Function(<built-in function empty>) with parameters (int64, Function(<class 'float'>))
* parameterized
In definition 0:
All templates rejected
[1] During: resolving callee type: Function(<built-in function empty>)
[2] During: typing of call at <ipython-input-87-8c7e8fa4c6eb> (3)
File "<ipython-input-87-8c7e8fa4c6eb>", line 3:
def empty():
return np.empty(5, np.float)
^
This is not usually a problem with Numba itself but instead often caused by
the use of unsupported features or an issue in resolving types.
To see Python/NumPy features supported by the latest release of Numba visit:
http://numba.pydata.org/numba-doc/dev/reference/pysupported.html
and
http://numba.pydata.org/numba-doc/dev/reference/numpysupported.html
For more information about typing errors and how to debug them visit:
http://numba.pydata.org/numba-doc/latest/user/troubleshoot.html#my-code-doesn-t-compile
If you think your code should work with Numba, please report the error message
and traceback, along with a minimal reproducer at:
https://github.com/numba/numba/issues/new
推荐答案
问题是对于numba中的NumPy数组,np.float
不是有效数据类型.您必须为numba提供显式dtype.这不仅是np.empty
的问题,还包括其他创建数组的例程,例如np.ones
,np.zeros
,...在numba中.
The problem is that np.float
is not a valid datatype for a NumPy array in numba. You have to provide the explicit dtype to numba. This isn't just a problem with np.empty
but also for other array-creation routines like np.ones
, np.zeros
, ... in numba.
要使您的示例正常工作,只需做一点改动:
To make your example work only a little change is needed:
from numba import jit
import numpy as np
@jit(nopython=True)
def empty():
return np.empty(5, np.float64) # np.float64 instead of np.float
empty()
或速记np.float_
.或者,如果您想使用32位浮点数,请改用np.float32
.
Or the shorthand np.float_
. Or if you want 32 bit floats use np.float32
instead.
请注意,np.float
只是普通Python float
的别名,因此不是 real NumPy dtype:
Note that np.float
is just an alias for the normal Python float
and as such not a real NumPy dtype:
>>> np.float is float
True
>>> issubclass(np.float, np.generic)
False
>>> issubclass(np.float64, np.generic)
True
同样,还有一些其他别名被解释为好像是NumPy dtypes(源):
Likewise there are some additional aliases that just are interpreted as if they were NumPy dtypes (source):
int int_
bool bool_
float float_
complex cfloat
bytes bytes_
str bytes_ (Python2) or unicode_ (Python3)
unicode unicode_
buffer void
(all others) object_
但是numba不了解这些别名,即使不使用numba,您也最好使用直接真实 dtypes :
However numba doesn't know about these aliases and even when not dealing with numba you are probably better off using the real dtypes directly:
Data type Description
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)
请注意,其中一些是numba不支持的!
Note that some of these are not supported by numba!
这篇关于如何在numba编译函数中使用np.empty;错误消息“所有模板均被拒绝".的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!