问题描述
我需要对来自水文地质实地工作的大型数据集进行一些分析.我正在使用 NumPy.我想知道我该怎么做:
乘以例如我的数组的第二列按一个数字(例如 5.2).然后
计算该列中数字的累积总和.
正如我提到的,我只想处理特定的列而不是整个数组.
你可以使用 NumPy 通过两个简单的步骤来完成:>>># 将二维数组 A 的第 2 列乘以 5.2>>>A[:,1] *= 5.2>>># 假设累积总和"是指减少"的总和:>>>A[:,1].sum()>>># 如果实际上你想要累积总和(即,返回一个新列)>>># 然后在第二步执行此操作:>>>NP.cumsum(A[:,1])
一些模拟数据:
>>>A = NP.random.rand(8, 5)>>>一种数组([[ 0.893, 0.824, 0.438, 0.284, 0.892],[ 0.534, 0.11, 0.409, 0.555, 0.96],[ 0.671, 0.817, 0.636, 0.522, 0.867],[ 0.752, 0.688, 0.142, 0.793, 0.716],[ 0.276, 0.818, 0.904, 0.767, 0.443],[0.57, 0.159, 0.144, 0.439, 0.747],[ 0.705, 0.793, 0.575, 0.507, 0.956],[ 0.322, 0.713, 0.963, 0.037, 0.509]])>>>A[:,1] *= 5.2>>>一种数组([[ 0.893, 4.287, 0.438, 0.284, 0.892],[ 0.534, 0.571, 0.409, 0.555, 0.96 ],[0.671, 4.25, 0.636, 0.522, 0.867],[0.752, 3.576, 0.142, 0.793, 0.716],[ 0.276, 4.255, 0.904, 0.767, 0.443],[0.57, 0.827, 0.144, 0.439, 0.747],[ 0.705, 4.122, 0.575, 0.507, 0.956],[ 0.322, 3.71, 0.963, 0.037, 0.509]])>>>A[:,1].sum()25.596156138451427在 NumPy 中了解元素选择(索引)只需要一些简单的规则:
NumPy 和 Python 一样,也是从 0 开始的,例如,下面的1"指的是第二列
逗号分隔括号内的维度,因此[行,列],例如,A[2,3]表示第三行第四列的项目(单元格")
冒号表示沿该维度的所有元素,例如,A[:,1] 创建 A 的第 2 列的视图;A[3,:] 指的是第四行
I need to do some analysis on a large dataset from a hydrolgeology field work. I am using NumPy. I want to know how I can:
multiply e.g. the 2nd column of my array by a number (e.g. 5.2). And then
calculate the cumulative sum of the numbers in that column.
As I mentioned I only want to work on a specific column and not the whole array.
you can do this in two simple steps using NumPy:
>>> # multiply column 2 of the 2D array, A, by 5.2
>>> A[:,1] *= 5.2
>>> # assuming by 'cumulative sum' you meant the 'reduced' sum:
>>> A[:,1].sum()
>>> # if in fact you want the cumulative sum (ie, returns a new column)
>>> # then do this for the second step instead:
>>> NP.cumsum(A[:,1])
with some mocked data:
>>> A = NP.random.rand(8, 5)
>>> A
array([[ 0.893, 0.824, 0.438, 0.284, 0.892],
[ 0.534, 0.11 , 0.409, 0.555, 0.96 ],
[ 0.671, 0.817, 0.636, 0.522, 0.867],
[ 0.752, 0.688, 0.142, 0.793, 0.716],
[ 0.276, 0.818, 0.904, 0.767, 0.443],
[ 0.57 , 0.159, 0.144, 0.439, 0.747],
[ 0.705, 0.793, 0.575, 0.507, 0.956],
[ 0.322, 0.713, 0.963, 0.037, 0.509]])
>>> A[:,1] *= 5.2
>>> A
array([[ 0.893, 4.287, 0.438, 0.284, 0.892],
[ 0.534, 0.571, 0.409, 0.555, 0.96 ],
[ 0.671, 4.25 , 0.636, 0.522, 0.867],
[ 0.752, 3.576, 0.142, 0.793, 0.716],
[ 0.276, 4.255, 0.904, 0.767, 0.443],
[ 0.57 , 0.827, 0.144, 0.439, 0.747],
[ 0.705, 4.122, 0.575, 0.507, 0.956],
[ 0.322, 3.71 , 0.963, 0.037, 0.509]])
>>> A[:,1].sum()
25.596156138451427
just a few simple rules are required to grok element selection (indexing) in NumPy:
NumPy, like Python, is 0-based, so eg, the "1" below refers to the second column
commas separate the dimensions inside the brackets, so [rows, columns], eg, A[2,3] means the item ("cell") at row three, column four
a colon means all of the elements along that dimension, eg, A[:,1] creates a view of A's column 2; A[3,:] refers to the fourth row
这篇关于如何在 NumPy 数组中的特定列中乘以标量?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!