本文介绍了使用Bokeh/Widget/Callback过滤数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

当前我的数据集的格式为:Date, Currency, Price,我正在货币级别进行过滤,然后使用它来生成图形.

Currently my data set is in the format: Date, Currency, Price which I am filtering at Currency level and then using it to generate graphs.

我想改进它,以便使用Python小部件/下拉框完成所有过滤?

I want to improve it so that all the filtering is done using Python widget/Dropdown boxes?

我是Python/Bokeh的新手,所以我需要一些帮助.

I'm new to Python/Bokeh so I need some help.

Date      Currency    Price
1/1/2017  AUDUSD      1.01
2/1/2017  AUDUSD      1.02
3/1/2017  AUDUSD      1.03
1/1/2017  USDJPY      1.01
2/1/2017  USDJPY      1.02
3/1/2017  USDJPY      1.03
1/1/2017  CADUSD      1.01
2/1/2017  CADUSD      1.02
3/1/2017  CADUSD      1.03

推荐答案

#Creating CCyPair wise menu
menu = Select(options=['AUDUSD','USDJPY'], value='AUDUSD')
#Function for dataframe
def get_all_price_dataset(src,name):
  df = src[(src.CCYPair == name) & (src.TYPE == 'Prices')].copy()
  return df
# Function to update Plot
def update_plot(attrname, old, new):
  newccy = menu.value
  side = buysellmenu.value
  datevalue = datemenu.value
  src_data_table = 
  ColumnDataSource(get_all_dataset(Combined,newccy,side,datevalue))
  DisplayData.data.update(src_data_table.data)
  #On change in menu,function gets called.
  menu.on_change('value', update_plot)
  #Displaying Menu and Plot.
  layout = layout([menu],
                  [plot])
  curdoc().add_root(layout)

这篇关于使用Bokeh/Widget/Callback过滤数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-28 15:03