本文介绍了如何计算Python / SQLAlchemy / Flask中的累积移动平均值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我会给一些上下文,这是有道理的。我在表格(评级)中获取产品的客户评级,并希望能够根据时间返回评级的累积移动平均线。



一个基本的例子如下每日评级:

  02二月 - 评分:5  - 累计平均:5 
03二月 - 评分:4 - Cum Avg:(5 + 4)/ 2 = 4.5
04 FEB - 评分:1 - Cum Avg:(5 + 4 + 1)/ 3 = 3.3
05 FEB - 评分:5 - Cum Avg:(5 + 4 + 1 + 5)/ 4 = 3.75
等等...

我试图想到一个不会严重缩放的方法。

我目前的想法是有一个函数,当一行被插入到排名表中,并且基于该产品的上一行计算出Cum Avg



所以这些字段会是这样的:

  TABLE:Rating 
| RatingId | DateTime | ProdId | RatingVal | RatingCnt | CumAvg |

但是,这似乎是一个相当狡猾的方式来存储数据。



完成此操作的(或任何)方法是什么?如果我要使用触发器,你怎么去SQLAlchemy这样做?



任何和所有的建议表示赞赏!$ b

解决方案

我不知道SQLAlchemy,但我可能会使用这样的方法:

    解决方案

  • 将累计平均值和评分数与个人评分分开存储。

  • 每次获得新评分时,更新累计平均数和评分数:

  • new_count = old_count + 1

  • new_average =((old_average * old_count)+ new_rating)/ new_count

  • >

  • 更新平均值和评分count可以用一个SQL语句来完成。


    I'll give some context so it makes sense. I'm capturing Customer Ratings for Products in a table (Rating) and want to be able to return a Cumulative Moving Average of the ratings based on time.

    A basic example follows taking a rating per day:

    02 FEB - Rating: 5 - Cum Avg: 5
    03 FEB - Rating: 4 - Cum Avg: (5+4)/2 = 4.5
    04 FEB - Rating: 1 - Cum Avg: (5+4+1)/3 = 3.3
    05 FEB - Rating: 5 - Cum Avg: (5+4+1+5)/4 = 3.75
    Etc...
    

    I'm trying to think of an approach that won't scale horribly.

    My current idea is to have a function that is tripped when a row is inserted into the Rating table that works out the Cum Avg based on the previous row for that product

    So the fields would be something like:

    TABLE: Rating
    | RatingId | DateTime | ProdId | RatingVal | RatingCnt | CumAvg |
    

    But this seems like a fairly dodgy way to store the data.

    What would be the (or any) way to accomplish this? If I was to use the 'trigger' of sorts, how do you go about doing that in SQLAlchemy?

    Any and all advice appreciated!

    解决方案

    I don't know about SQLAlchemy, but I might use an approach like this:

    • Store the cumulative average and rating count separately from individual ratings.
    • Every time you get a new rating, update the cumulative average and rating count:
      • new_count = old_count + 1
      • new_average = ((old_average * old_count) + new_rating) / new_count
    • Optionally, store a row for each new rating.

    Updating the average and rating count could be done with a single SQL statement.

    这篇关于如何计算Python / SQLAlchemy / Flask中的累积移动平均值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

  • 10-20 22:22