Scheduler结构

Scheduler 是整个 kube-scheduler 的一个 structure,提供了 kube-scheduler 运行所需的组件。

type Scheduler struct {
	// Cache是一个抽象,会缓存pod的信息,作为scheduler进行查找,操作是基于Pod进行增加
	Cache internalcache.Cache
	// Extenders 算是调度框架中提供的调度插件,会影响kubernetes中的调度策略
	Extenders []framework.Extender

	// NextPod 作为一个函数提供,会阻塞获取下一个ke'diao'du
	NextPod func() *framework.QueuedPodInfo

	// Error is called if there is an error. It is passed the pod in
	// question, and the error
	Error func(*framework.QueuedPodInfo, error)

	// SchedulePod 尝试将给出的pod调度到Node。
	SchedulePod func(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (ScheduleResult, error)

	// 关闭scheduler的信号
	StopEverything <-chan struct{}

	// SchedulingQueue保存要调度的Pod
	SchedulingQueue internalqueue.SchedulingQueue

	// Profiles中是多个调度框架
	Profiles profile.Map
	client clientset.Interface
	nodeInfoSnapshot *internalcache.Snapshot
	percentageOfNodesToScore int32
	nextStartNodeIndex int
}

作为实际执行的两个核心,SchedulingQueue ,与 scheduleOne 将会分析到这两个

SchedulingQueue

在知道 kube-scheduler 初始化过程后,需要对 kube-scheduler 的整个 structureworkflow 进行分析

Run 中,运行的是 一个 SchedulingQueue 与 一个 scheduleOne ,从结构上看是属于 Scheduler

func (sched *Scheduler) Run(ctx context.Context) {
	sched.SchedulingQueue.Run()

	// We need to start scheduleOne loop in a dedicated goroutine,
	// because scheduleOne function hangs on getting the next item
	// from the SchedulingQueue.
	// If there are no new pods to schedule, it will be hanging there
	// and if done in this goroutine it will be blocking closing
	// SchedulingQueue, in effect causing a deadlock on shutdown.
	go wait.UntilWithContext(ctx, sched.scheduleOne, 0)

	<-ctx.Done()
	sched.SchedulingQueue.Close()
}

SchedulingQueue 是一个队列的抽象,用于存储等待调度的Pod。该接口遵循类似于 cache.FIFO 和 cache.Heap 的模式。

type SchedulingQueue interface {
	framework.PodNominator
	Add(pod *v1.Pod) error
	// Activate moves the given pods to activeQ iff they're in unschedulablePods or backoffQ.
	// The passed-in pods are originally compiled from plugins that want to activate Pods,
	// by injecting the pods through a reserved CycleState struct (PodsToActivate).
	Activate(pods map[string]*v1.Pod)
	// 将不可调度的Pod重入到队列中
	AddUnschedulableIfNotPresent(pod *framework.QueuedPodInfo, podSchedulingCycle int64) error
	// SchedulingCycle returns the current number of scheduling cycle which is
	// cached by scheduling queue. Normally, incrementing this number whenever
	// a pod is popped (e.g. called Pop()) is enough.
	SchedulingCycle() int64
	// Pop会弹出一个pod,并从head优先级队列中删除
	Pop() (*framework.QueuedPodInfo, error)
	Update(oldPod, newPod *v1.Pod) error
	Delete(pod *v1.Pod) error
	MoveAllToActiveOrBackoffQueue(event framework.ClusterEvent, preCheck PreEnqueueCheck)
	AssignedPodAdded(pod *v1.Pod)
	AssignedPodUpdated(pod *v1.Pod)
	PendingPods() []*v1.Pod
	// Close closes the SchedulingQueue so that the goroutine which is
	// waiting to pop items can exit gracefully.
	Close()
	// Run starts the goroutines managing the queue.
	Run()
}

PriorityQueueSchedulingQueue 的实现,该部分的核心构成是两个子队列与一个数据结构,即 activeQbackoffQunschedulablePods

  • activeQ:是一个 heap 类型的优先级队列,是 sheduler 从中获得优先级最高的Pod进行调度
  • backoffQ:也是一个 heap 类型的优先级队列,存放的是不可调度的Pod
  • unschedulablePods :保存确定不可被调度的Pod
type SchedulingQueue interface {
	framework.PodNominator
	Add(pod *v1.Pod) error
	// Activate moves the given pods to activeQ iff they're in unschedulablePods or backoffQ.
	// The passed-in pods are originally compiled from plugins that want to activate Pods,
	// by injecting the pods through a reserved CycleState struct (PodsToActivate).
	Activate(pods map[string]*v1.Pod)
	// AddUnschedulableIfNotPresent adds an unschedulable pod back to scheduling queue.
	// The podSchedulingCycle represents the current scheduling cycle number which can be
	// returned by calling SchedulingCycle().
	AddUnschedulableIfNotPresent(pod *framework.QueuedPodInfo, podSchedulingCycle int64) error
	// SchedulingCycle returns the current number of scheduling cycle which is
	// cached by scheduling queue. Normally, incrementing this number whenever
	// a pod is popped (e.g. called Pop()) is enough.
	SchedulingCycle() int64
	// Pop removes the head of the queue and returns it. It blocks if the
	// queue is empty and waits until a new item is added to the queue.
	Pop() (*framework.QueuedPodInfo, error)
	Update(oldPod, newPod *v1.Pod) error
	Delete(pod *v1.Pod) error
	MoveAllToActiveOrBackoffQueue(event framework.ClusterEvent, preCheck PreEnqueueCheck)
	AssignedPodAdded(pod *v1.Pod)
	AssignedPodUpdated(pod *v1.Pod)
	PendingPods() []*v1.Pod
	// Close closes the SchedulingQueue so that the goroutine which is
	// waiting to pop items can exit gracefully.
	Close()
	// Run starts the goroutines managing the queue.
	Run()
}

在New scheduler 时可以看到会初始化这个queue

podQueue := internalqueue.NewSchedulingQueue(
    // 实现pod对比的一个函数即less
    profiles[options.profiles[0].SchedulerName].QueueSortFunc(),
    informerFactory,
    internalqueue.WithPodInitialBackoffDuration(time.Duration(options.podInitialBackoffSeconds)*time.Second),
    internalqueue.WithPodMaxBackoffDuration(time.Duration(options.podMaxBackoffSeconds)*time.Second),
    internalqueue.WithPodNominator(nominator),
    internalqueue.WithClusterEventMap(clusterEventMap),
    internalqueue.WithPodMaxInUnschedulablePodsDuration(options.podMaxInUnschedulablePodsDuration),
)

NewSchedulingQueue 则是初始化这个 PriorityQueue

// NewSchedulingQueue initializes a priority queue as a new scheduling queue.
func NewSchedulingQueue(
	lessFn framework.LessFunc,
	informerFactory informers.SharedInformerFactory,
	opts ...Option) SchedulingQueue {
	return NewPriorityQueue(lessFn, informerFactory, opts...)
}

// NewPriorityQueue creates a PriorityQueue object.
func NewPriorityQueue(
	lessFn framework.LessFunc,
	informerFactory informers.SharedInformerFactory,
	opts ...Option,
) *PriorityQueue {
	options := defaultPriorityQueueOptions
	for _, opt := range opts {
		opt(&options)
	}
	// 这个就是 less函数,作为打分的一部分
	comp := func(podInfo1, podInfo2 interface{}) bool {
		pInfo1 := podInfo1.(*framework.QueuedPodInfo)
		pInfo2 := podInfo2.(*framework.QueuedPodInfo)
		return lessFn(pInfo1, pInfo2)
	}

	if options.podNominator == nil {
		options.podNominator = NewPodNominator(informerFactory.Core().V1().Pods().Lister())
	}

	pq := &PriorityQueue{
		PodNominator:                      options.podNominator,
		clock:                             options.clock,
		stop:                              make(chan struct{}),
		podInitialBackoffDuration:         options.podInitialBackoffDuration,
		podMaxBackoffDuration:             options.podMaxBackoffDuration,
		podMaxInUnschedulablePodsDuration: options.podMaxInUnschedulablePodsDuration,
		activeQ:                           heap.NewWithRecorder(podInfoKeyFunc, comp, metrics.NewActivePodsRecorder()),
		unschedulablePods:                 newUnschedulablePods(metrics.NewUnschedulablePodsRecorder()),
		moveRequestCycle:                  -1,
		clusterEventMap:                   options.clusterEventMap,
	}
	pq.cond.L = &pq.lock
	pq.podBackoffQ = heap.NewWithRecorder(podInfoKeyFunc, pq.podsCompareBackoffCompleted, metrics.NewBackoffPodsRecorder())
	pq.nsLister = informerFactory.Core().V1().Namespaces().Lister()

	return pq
}

了解了Queue的结构,就需要知道 入队列与出队列是在哪里操作的。在初始化时,需要注册一个 addEventHandlerFuncs 这个时候,会注入三个动作函数,也就是controller中的概念;而在AddFunc中可以看到会入队列。

注入是对 Pod 的informer注入的,注入的函数 addPodToSchedulingQueue 就是入栈

Handler: cache.ResourceEventHandlerFuncs{
    AddFunc:    sched.addPodToSchedulingQueue,
    UpdateFunc: sched.updatePodInSchedulingQueue,
    DeleteFunc: sched.deletePodFromSchedulingQueue,
},

func (sched *Scheduler) addPodToSchedulingQueue(obj interface{}) {
	pod := obj.(*v1.Pod)
	klog.V(3).InfoS("Add event for unscheduled pod", "pod", klog.KObj(pod))
	if err := sched.SchedulingQueue.Add(pod); err != nil {
		utilruntime.HandleError(fmt.Errorf("unable to queue %T: %v", obj, err))
	}
}

而这个 SchedulingQueue 的实现就是 PriorityQueue ,而Add中则对 activeQ进行的操作

func (p *PriorityQueue) Add(pod *v1.Pod) error {
	p.lock.Lock()
	defer p.lock.Unlock()
    // 格式化入栈数据,包含podinfo,里会包含v1.Pod
    // 初始化的时间,创建的时间,以及不能被调度时的记录其plugin的名称
	pInfo := p.newQueuedPodInfo(pod)
    // 入栈
	if err := p.activeQ.Add(pInfo); err != nil {
		klog.ErrorS(err, "Error adding pod to the active queue", "pod", klog.KObj(pod))
		return err
	}
	if p.unschedulablePods.get(pod) != nil {
		klog.ErrorS(nil, "Error: pod is already in the unschedulable queue", "pod", klog.KObj(pod))
		p.unschedulablePods.delete(pod)
	}
	// Delete pod from backoffQ if it is backing off
	if err := p.podBackoffQ.Delete(pInfo); err == nil {
		klog.ErrorS(nil, "Error: pod is already in the podBackoff queue", "pod", klog.KObj(pod))
	}
	metrics.SchedulerQueueIncomingPods.WithLabelValues("active", PodAdd).Inc()
	p.PodNominator.AddNominatedPod(pInfo.PodInfo, nil)
	p.cond.Broadcast()

	return nil
}

在上面看 scheduler 结构时,可以看到有一个 nextPod的,nextPod就是从队列中弹出一个pod,这个在scheduler 时会传入 MakeNextPodFunc 就是这个 nextpod

func MakeNextPodFunc(queue SchedulingQueue) func() *framework.QueuedPodInfo {
	return func() *framework.QueuedPodInfo {
		podInfo, err := queue.Pop()
		if err == nil {
			klog.V(4).InfoS("About to try and schedule pod", "pod", klog.KObj(podInfo.Pod))
			for plugin := range podInfo.UnschedulablePlugins {
				metrics.UnschedulableReason(plugin, podInfo.Pod.Spec.SchedulerName).Dec()
			}
			return podInfo
		}
		klog.ErrorS(err, "Error while retrieving next pod from scheduling queue")
		return nil
	}
}

而这个 queue.Pop() 对应的就是 PriorityQueuePop() ,在这里会将作为 activeQ 的消费端

func (p *PriorityQueue) Pop() (*framework.QueuedPodInfo, error) {
   p.lock.Lock()
   defer p.lock.Unlock()
   for p.activeQ.Len() == 0 {
      // When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
      // When Close() is called, the p.closed is set and the condition is broadcast,
      // which causes this loop to continue and return from the Pop().
      if p.closed {
         return nil, fmt.Errorf(queueClosed)
      }
      p.cond.Wait()
   }
   obj, err := p.activeQ.Pop()
   if err != nil {
      return nil, err
   }
   pInfo := obj.(*framework.QueuedPodInfo)
   pInfo.Attempts++
   p.schedulingCycle++
   return pInfo, nil
}

在上面入口部分也看到了,scheduleOne 和 scheduler,scheduleOne 就是去消费一个Pod,他会调用 NextPod,NextPod就是在初始化传入的 MakeNextPodFunc ,至此回到对应的 Pop来做消费。

schedulerOne是为一个Pod做调度的流程。

func (sched *Scheduler) scheduleOne(ctx context.Context) {
	podInfo := sched.NextPod()
	// pod could be nil when schedulerQueue is closed
	if podInfo == nil || podInfo.Pod == nil {
		return
	}
	pod := podInfo.Pod
	fwk, err := sched.frameworkForPod(pod)
	if err != nil {
		// This shouldn't happen, because we only accept for scheduling the pods
		// which specify a scheduler name that matches one of the profiles.
		klog.ErrorS(err, "Error occurred")
		return
	}
	if sched.skipPodSchedule(fwk, pod) {
		return
	}
...

调度上下文

kube-scheduler的调度上下文-LMLPHP

当了解了scheduler结构后,下面分析下调度上下文的过程。看看扩展点是怎么工作的。这个时候又需要提到官网的调度上下文的图。

调度框架

调度框架 (scheduling framework SF ) 是kubernetes为 scheduler设计的一个pluggable的架构。SF 将scheduler设计为 Plugin 式的 API,API将上一章中提到的一些列调度策略实现为 Plugin

SF 中,定义了一些扩展点 (extension points EP ),而被实现为Plugin的调度程序将被注册在一个或多个 EP 中,换句话来说,在这些 EP 的执行过程中如果注册在多个 EP 中,将会在多个 EP 被调用。

每次调度都分为两个阶段,调度周期(Scheduling Cycel)与绑定周期(Binding Cycle)。

  • SC 表示为,为Pod选择一个节点;SC 是串行运行的。
  • BC 表示为,将 SC 决策结果应用于集群中;BC 可以同时运行。

调度周期与绑定周期结合一起,被称为调度上下文Scheduling Context),下图则是调度上下文的工作流

扩展点

扩展点(Extension points)是指在调度上下文中的每个可扩展API,通过图提现为[图1]。其中 Filter 相当于 PredicateScoring 相当于 Priority

对于调度阶段会通过以下扩展点:

  • Sort:该插件提供了排序功能,用于对在调度队列中待处理 Pod 进行排序。一次只能启用一个队列排序。

  • preFilter:该插件用于在过滤之前预处理或检查 Pod 或集群的相关信息。这里会终止调度

  • filter:该插件相当于调度上下文中的 Predicates,用于排除不能运行 Pod 的节点。Filter 会按配置的顺序进行调用。如果有一个filter将节点标记位不可用,则将 Pod 标记为不可调度(即不会向下执行)。

  • postFilter:当没有为 pod 找到FN时,该插件会按照配置的顺序进行调用。如果任何postFilter插件将 Pod 标记为schedulable,则不会调用其余插件。即 filter 成功后不会进行这步骤

  • preScore:可用于进行预Score工作(通知性的扩展点)。

  • score:该插件为每个通过 filter 阶段的Node提供打分服务。然后Scheduler将选择具有最高加权分数总和的Node。

  • reserve:因为绑定事件时异步发生的,该插件是为了避免Pod在绑定到节点前时,调度到新的Pod,使节点使用资源超过可用资源情况。如果后续阶段发生错误或失败,将触发 UnReserve 回滚(通知性扩展点)。这也是作为调度周期中最后一个状态,要么成功到 postBind ,要么失败触发 UnReserve

  • permit:该插件可以阻止或延迟 Pod 的绑定,一般情况下这步骤会做三件事:

    • appove :调度器继续绑定过程
    • Deny:如果任何一个Premit拒绝了Pod与节点的绑定,那么将触发 UnReserve ,并重入队列
    • Wait: 如果 Permit 插件返回 Wait,该 Pod 将保留在内部 Wait Pod 列表中,直到被 Appove。如果发生超时,wait 变为 deny ,将Pod放回至调度队列中,并触发 Unreserve 回滚 。
  • preBind:该插件用于在 bind Pod 之前执行所需的前置工作。如,preBind 可能会提供一个网络卷并将其挂载到目标节点上。如果在该步骤中的任意插件返回错误,则Pod 将被 deny 并放置到调度队列中。

  • bind:在所有的 preBind 完成后,该插件将用于将Pod绑定到Node,并按顺序调用绑定该步骤的插件。如果有一个插件处理了这个事件,那么则忽略其余所有插件。

  • postBind:该插件在绑定 Pod 后调用,可用于清理相关资源(通知性的扩展点)。

  • multiPoint:这是一个仅配置字段,允许同时为所有适用的扩展点启用或禁用插件。

scheduler 对于调度上下文在代码中的实现就是 scheduleOne ,下面就是看这个调度上下文

Sort

Sort 插件提供了排序功能,用于对在调度队列中待处理 Pod 进行排序。一次只能启用一个队列排序。

在进入 scheduleOne 后,NextPodactiveQ 中队列中得到一个Pod,然后的 frameworkForPod 会做打分的动作就是调度上下文的第一个扩展点 sort

func (sched *Scheduler) scheduleOne(ctx context.Context) {
	podInfo := sched.NextPod()
	// pod could be nil when schedulerQueue is closed
	if podInfo == nil || podInfo.Pod == nil {
		return
	}
	pod := podInfo.Pod
	fwk, err := sched.frameworkForPod(pod)
...

func (sched *Scheduler) frameworkForPod(pod *v1.Pod) (framework.Framework, error) {
    // 获取指定的profile
	fwk, ok := sched.Profiles[pod.Spec.SchedulerName]
	if !ok {
		return nil, fmt.Errorf("profile not found for scheduler name %q", pod.Spec.SchedulerName)
	}
	return fwk, nil
}

回顾,因为在New scheduler时会初始化这个 sort 函数

podQueue := internalqueue.NewSchedulingQueue(
    profiles[options.profiles[0].SchedulerName].QueueSortFunc(),
    informerFactory,
    internalqueue.WithPodInitialBackoffDuration(time.Duration(options.podInitialBackoffSeconds)*time.Second),
    internalqueue.WithPodMaxBackoffDuration(time.Duration(options.podMaxBackoffSeconds)*time.Second),
    internalqueue.WithPodNominator(nominator),
    internalqueue.WithClusterEventMap(clusterEventMap),
    internalqueue.WithPodMaxInUnschedulablePodsDuration(options.podMaxInUnschedulablePodsDuration),
)

preFilter

preFilter作为第一个扩展点,是用于在过滤之前预处理或检查 Pod 或集群的相关信息。这里会终止调度

func (sched *Scheduler) scheduleOne(ctx context.Context) {
	podInfo := sched.NextPod()
	// pod could be nil when schedulerQueue is closed
	if podInfo == nil || podInfo.Pod == nil {
		return
	}
	pod := podInfo.Pod
	fwk, err := sched.frameworkForPod(pod)
	if err != nil {
		// This shouldn't happen, because we only accept for scheduling the pods
		// which specify a scheduler name that matches one of the profiles.
		klog.ErrorS(err, "Error occurred")
		return
	}
	if sched.skipPodSchedule(fwk, pod) {
		return
	}

	klog.V(3).InfoS("Attempting to schedule pod", "pod", klog.KObj(pod))

	// Synchronously attempt to find a fit for the pod.
	start := time.Now()
	state := framework.NewCycleState()
	state.SetRecordPluginMetrics(rand.Intn(100) < pluginMetricsSamplePercent)
	// Initialize an empty podsToActivate struct, which will be filled up by plugins or stay empty.
	podsToActivate := framework.NewPodsToActivate()
	state.Write(framework.PodsToActivateKey, podsToActivate)

	schedulingCycleCtx, cancel := context.WithCancel(ctx)
	defer cancel()
    // 这里将进入prefilter
	scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)

schedulePod 尝试将给定的 pod 调度到节点列表中的节点之一。如果成功,它将返回节点的名称。

func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {
	trace := utiltrace.New("Scheduling", utiltrace.Field{Key: "namespace", Value: pod.Namespace}, utiltrace.Field{Key: "name", Value: pod.Name})
	defer trace.LogIfLong(100 * time.Millisecond)
	// 用于将cache更新为当前内容
	if err := sched.Cache.UpdateSnapshot(sched.nodeInfoSnapshot); err != nil {
		return result, err
	}
	trace.Step("Snapshotting scheduler cache and node infos done")

	if sched.nodeInfoSnapshot.NumNodes() == 0 {
		return result, ErrNoNodesAvailable
	}
	// 找到一个合适的pod时,会执行扩展点
	feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)

    ...

findNodesThatFitPod 会执行对应的过滤插件来找到最适合的Node,包括备注,以及方法名都可以看到,这里运行的插件😁😁,后面会分析算法内容,只对workflow学习。

func (sched *Scheduler) findNodesThatFitPod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) ([]*v1.Node, framework.Diagnosis, error) {
	diagnosis := framework.Diagnosis{
		NodeToStatusMap:      make(framework.NodeToStatusMap),
		UnschedulablePlugins: sets.NewString(),
	}

	// Run "prefilter" plugins.
	preRes, s := fwk.RunPreFilterPlugins(ctx, state, pod)
	allNodes, err := sched.nodeInfoSnapshot.NodeInfos().List()
	if err != nil {
		return nil, diagnosis, err
	}
	if !s.IsSuccess() {
		if !s.IsUnschedulable() {
			return nil, diagnosis, s.AsError()
		}
		// All nodes will have the same status. Some non trivial refactoring is
		// needed to avoid this copy.
		for _, n := range allNodes {
			diagnosis.NodeToStatusMap[n.Node().Name] = s
		}
		// Status satisfying IsUnschedulable() gets injected into diagnosis.UnschedulablePlugins.
		if s.FailedPlugin() != "" {
			diagnosis.UnschedulablePlugins.Insert(s.FailedPlugin())
		}
		return nil, diagnosis, nil
	}

	// "NominatedNodeName" can potentially be set in a previous scheduling cycle as a result of preemption.
	// This node is likely the only candidate that will fit the pod, and hence we try it first before iterating over all nodes.
	if len(pod.Status.NominatedNodeName) > 0 {
		feasibleNodes, err := sched.evaluateNominatedNode(ctx, pod, fwk, state, diagnosis)
		if err != nil {
			klog.ErrorS(err, "Evaluation failed on nominated node", "pod", klog.KObj(pod), "node", pod.Status.NominatedNodeName)
		}
		// Nominated node passes all the filters, scheduler is good to assign this node to the pod.
		if len(feasibleNodes) != 0 {
			return feasibleNodes, diagnosis, nil
		}
	}

	nodes := allNodes
	if !preRes.AllNodes() {
		nodes = make([]*framework.NodeInfo, 0, len(preRes.NodeNames))
		for n := range preRes.NodeNames {
			nInfo, err := sched.nodeInfoSnapshot.NodeInfos().Get(n)
			if err != nil {
				return nil, diagnosis, err
			}
			nodes = append(nodes, nInfo)
		}
	}
	feasibleNodes, err := sched.findNodesThatPassFilters(ctx, fwk, state, pod, diagnosis, nodes)
	if err != nil {
		return nil, diagnosis, err
	}

	feasibleNodes, err = findNodesThatPassExtenders(sched.Extenders, pod, feasibleNodes, diagnosis.NodeToStatusMap)
	if err != nil {
		return nil, diagnosis, err
	}
	return feasibleNodes, diagnosis, nil
}

filter

filter插件相当于调度上下文中的 Predicates,用于排除不能运行 Pod 的节点。Filter 会按配置的顺序进行调用。如果有一个filter将节点标记位不可用,则将 Pod 标记为不可调度(即不会向下执行)。

对于代码中来讲,filter还是处于 findNodesThatFitPod 函数中,findNodesThatPassFilters 就是获取到 FN,即可行节点,而这个过程就是 filter 扩展点

func (sched *Scheduler) findNodesThatFitPod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) ([]*v1.Node, framework.Diagnosis, error) {
	...

	feasibleNodes, err := sched.findNodesThatPassFilters(ctx, fwk, state, pod, diagnosis, nodes)
	if err != nil {
		return nil, diagnosis, err
	}

	feasibleNodes, err = findNodesThatPassExtenders(sched.Extenders, pod, feasibleNodes, diagnosis.NodeToStatusMap)
	if err != nil {
		return nil, diagnosis, err
	}
	return feasibleNodes, diagnosis, nil
}

Postfilter

当没有为 pod 找到FN时,该插件会按照配置的顺序进行调用。如果任何postFilter插件将 Pod 标记为schedulable,则不会调用其余插件。即 filter 成功后不会进行这步骤,那我们来验证下这里把😊

还是在 scheduleOne 中,当我们运行的 SchedulePod 完成后(成功或失败),这时会返回一个err,而 postfilter 会根据这个 err进行选择执行或不执行,符合官方给出的说法。

scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)
	if err != nil {
		// SchedulePod() may have failed because the pod would not fit on any host, so we try to
		// preempt, with the expectation that the next time the pod is tried for scheduling it
		// will fit due to the preemption. It is also possible that a different pod will schedule
		// into the resources that were preempted, but this is harmless.
		var nominatingInfo *framework.NominatingInfo
		if fitError, ok := err.(*framework.FitError); ok {
			if !fwk.HasPostFilterPlugins() {
				klog.V(3).InfoS("No PostFilter plugins are registered, so no preemption will be performed")
			} else {
				// Run PostFilter plugins to try to make the pod schedulable in a future scheduling cycle.
				result, status := fwk.RunPostFilterPlugins(ctx, state, pod, fitError.Diagnosis.NodeToStatusMap)
				if status.Code() == framework.Error {
					klog.ErrorS(nil, "Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
				} else {
					fitError.Diagnosis.PostFilterMsg = status.Message()
					klog.V(5).InfoS("Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
				}
				if result != nil {
					nominatingInfo = result.NominatingInfo
				}
			}
			// Pod did not fit anywhere, so it is counted as a failure. If preemption
			// succeeds, the pod should get counted as a success the next time we try to
			// schedule it. (hopefully)
			metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
		} else if err == ErrNoNodesAvailable {
			nominatingInfo = clearNominatedNode
			// No nodes available is counted as unschedulable rather than an error.
			metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
		} else {
			nominatingInfo = clearNominatedNode
			klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))
			metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
		}
		sched.handleSchedulingFailure(ctx, fwk, podInfo, err, v1.PodReasonUnschedulable, nominatingInfo)
		return
	}

PreScore,Score

可用于进行预Score工作,作为通知性的扩展点,会在在filter完之后直接会关联 preScore 插件进行继续工作,而不是返回,如果配置的这些插件有任何一个返回失败,则Pod将被拒绝。


func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {
	trace := utiltrace.New("Scheduling", utiltrace.Field{Key: "namespace", Value: pod.Namespace}, utiltrace.Field{Key: "name", Value: pod.Name})
	defer trace.LogIfLong(100 * time.Millisecond)

	if err := sched.Cache.UpdateSnapshot(sched.nodeInfoSnapshot); err != nil {
		return result, err
	}
	trace.Step("Snapshotting scheduler cache and node infos done")

	if sched.nodeInfoSnapshot.NumNodes() == 0 {
		return result, ErrNoNodesAvailable
	}

	feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)
	if err != nil {
		return result, err
	}
	trace.Step("Computing predicates done")

	if len(feasibleNodes) == 0 {
		return result, &framework.FitError{
			Pod:         pod,
			NumAllNodes: sched.nodeInfoSnapshot.NumNodes(),
			Diagnosis:   diagnosis,
		}
	}

	// When only one node after predicate, just use it.
	if len(feasibleNodes) == 1 {
		return ScheduleResult{
			SuggestedHost:  feasibleNodes[0].Name,
			EvaluatedNodes: 1 + len(diagnosis.NodeToStatusMap),
			FeasibleNodes:  1,
		}, nil
	}
	// 这里会完成prescore,score
	priorityList, err := prioritizeNodes(ctx, sched.Extenders, fwk, state, pod, feasibleNodes)
	if err != nil {
		return result, err
	}

	host, err := selectHost(priorityList)
	trace.Step("Prioritizing done")

	return ScheduleResult{
		SuggestedHost:  host,
		EvaluatedNodes: len(feasibleNodes) + len(diagnosis.NodeToStatusMap),
		FeasibleNodes:  len(feasibleNodes),
	}, err
}

priorityNodes 会通过配置的插件给Node打分,并返回每个Node的分数,将每个插件打分结果计算总和获得Node的分数,最后获得节点的加权总分数。

func prioritizeNodes(
	ctx context.Context,
	extenders []framework.Extender,
	fwk framework.Framework,
	state *framework.CycleState,
	pod *v1.Pod,
	nodes []*v1.Node,
) (framework.NodeScoreList, error) {
	// If no priority configs are provided, then all nodes will have a score of one.
	// This is required to generate the priority list in the required format
	if len(extenders) == 0 && !fwk.HasScorePlugins() {
		result := make(framework.NodeScoreList, 0, len(nodes))
		for i := range nodes {
			result = append(result, framework.NodeScore{
				Name:  nodes[i].Name,
				Score: 1,
			})
		}
		return result, nil
	}

	// Run PreScore plugins.
	preScoreStatus := fwk.RunPreScorePlugins(ctx, state, pod, nodes)
	if !preScoreStatus.IsSuccess() {
		return nil, preScoreStatus.AsError()
	}

	// Run the Score plugins.
	scoresMap, scoreStatus := fwk.RunScorePlugins(ctx, state, pod, nodes)
	if !scoreStatus.IsSuccess() {
		return nil, scoreStatus.AsError()
	}

	// Additional details logged at level 10 if enabled.
	klogV := klog.V(10)
	if klogV.Enabled() {
		for plugin, nodeScoreList := range scoresMap {
			for _, nodeScore := range nodeScoreList {
				klogV.InfoS("Plugin scored node for pod", "pod", klog.KObj(pod), "plugin", plugin, "node", nodeScore.Name, "score", nodeScore.Score)
			}
		}
	}

	// Summarize all scores.
	result := make(framework.NodeScoreList, 0, len(nodes))

	for i := range nodes {
		result = append(result, framework.NodeScore{Name: nodes[i].Name, Score: 0})
		for j := range scoresMap {
			result[i].Score += scoresMap[j][i].Score
		}
	}

	if len(extenders) != 0 && nodes != nil {
		var mu sync.Mutex
		var wg sync.WaitGroup
		combinedScores := make(map[string]int64, len(nodes))
		for i := range extenders {
			if !extenders[i].IsInterested(pod) {
				continue
			}
			wg.Add(1)
			go func(extIndex int) {
				metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Inc()
				defer func() {
					metrics.SchedulerGoroutines.WithLabelValues(metrics.PrioritizingExtender).Dec()
					wg.Done()
				}()
				prioritizedList, weight, err := extenders[extIndex].Prioritize(pod, nodes)
				if err != nil {
					// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
					klog.V(5).InfoS("Failed to run extender's priority function. No score given by this extender.", "error", err, "pod", klog.KObj(pod), "extender", extenders[extIndex].Name())
					return
				}
				mu.Lock()
				for i := range *prioritizedList {
					host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
					if klogV.Enabled() {
						klogV.InfoS("Extender scored node for pod", "pod", klog.KObj(pod), "extender", extenders[extIndex].Name(), "node", host, "score", score)
					}
					combinedScores[host] += score * weight
				}
				mu.Unlock()
			}(i)
		}
		// wait for all go routines to finish
		wg.Wait()
		for i := range result {
			// MaxExtenderPriority may diverge from the max priority used in the scheduler and defined by MaxNodeScore,
			// therefore we need to scale the score returned by extenders to the score range used by the scheduler.
			result[i].Score += combinedScores[result[i].Name] * (framework.MaxNodeScore / extenderv1.MaxExtenderPriority)
		}
	}

	if klogV.Enabled() {
		for i := range result {
			klogV.InfoS("Calculated node's final score for pod", "pod", klog.KObj(pod), "node", result[i].Name, "score", result[i].Score)
		}
	}
	return result, nil
}

Reserve

Reserve 因为绑定事件时异步发生的,该插件是为了避免Pod在绑定到节点前时,调度到新的Pod,使节点使用资源超过可用资源情况。如果后续阶段发生错误或失败,将触发 UnReserve 回滚(通知性扩展点)。这也是作为调度周期中最后一个状态,要么成功到 postBind ,要么失败触发 UnReserve

// Run the Reserve method of reserve plugins.
if sts := fwk.RunReservePluginsReserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost); !sts.IsSuccess() { // 当处理不成功时
    metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
    // 触发 un-reserve 来清理相关Pod的状态
    fwk.RunReservePluginsUnreserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
    if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
        klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")
    }
    sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, sts.AsError(), SchedulerError, clearNominatedNode)
    return
}

permit

Permit 插件可以阻止或延迟 Pod 的绑定

	// Run "permit" plugins.
	runPermitStatus := fwk.RunPermitPlugins(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
	if !runPermitStatus.IsWait() && !runPermitStatus.IsSuccess() {
		var reason string
		if runPermitStatus.IsUnschedulable() {
			metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
			reason = v1.PodReasonUnschedulable
		} else {
			metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
			reason = SchedulerError
		}
        // 只要其中一个插件返回的状态不是 success 或者 wait
		fwk.RunReservePluginsUnreserve(schedulingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
        // 从cache中忘掉pod
		if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
			klog.ErrorS(forgetErr, "Scheduler cache ForgetPod failed")
		}
		sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, runPermitStatus.AsError(), reason, clearNominatedNode)
		return
	}

Binding Cycle

在选择好 FN 后则做一个假设绑定,并更新到cache中,接下来回去执行真正的bind操作,也就是 binding cycle

func (sched *Scheduler) scheduleOne(ctx context.Context) {
	...
    ...
	// binding cycle 是一个异步的操作,这里表现就是go协程
	go func() {
		bindingCycleCtx, cancel := context.WithCancel(ctx)
		defer cancel()
		metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Inc()
		defer metrics.SchedulerGoroutines.WithLabelValues(metrics.Binding).Dec()
		// 运行WaitOnPermit插件,如果失败则,unReserve回滚
		waitOnPermitStatus := fwk.WaitOnPermit(bindingCycleCtx, assumedPod)
		if !waitOnPermitStatus.IsSuccess() {
			var reason string
			if waitOnPermitStatus.IsUnschedulable() {
				metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
				reason = v1.PodReasonUnschedulable
			} else {
				metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
				reason = SchedulerError
			}
			// trigger un-reserve plugins to clean up state associated with the reserved Pod
			fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
			if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
				klog.ErrorS(forgetErr, "scheduler cache ForgetPod failed")
			} else {
				// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
				// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
				// TODO(#103853): de-duplicate the logic.
				// Avoid moving the assumed Pod itself as it's always Unschedulable.
				// It's intentional to "defer" this operation; otherwise MoveAllToActiveOrBackoffQueue() would
				// update `q.moveRequest` and thus move the assumed pod to backoffQ anyways.
				defer sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, func(pod *v1.Pod) bool {
					return assumedPod.UID != pod.UID
				})
			}
			sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, waitOnPermitStatus.AsError(), reason, clearNominatedNode)
			return
		}

	// 运行Prebind 插件
		preBindStatus := fwk.RunPreBindPlugins(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
		if !preBindStatus.IsSuccess() {
			metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
			// trigger un-reserve plugins to clean up state associated with the reserved Pod
			fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
			if forgetErr := sched.Cache.ForgetPod(assumedPod); forgetErr != nil {
				klog.ErrorS(forgetErr, "scheduler cache ForgetPod failed")
			} else {
				// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
				// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
				// TODO(#103853): de-duplicate the logic.
				sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, nil)
			}
			sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, preBindStatus.AsError(), SchedulerError, clearNominatedNode)
			return
		}
		// bind是真正的绑定操作
		err := sched.bind(bindingCycleCtx, fwk, assumedPod, scheduleResult.SuggestedHost, state)
		if err != nil {
			metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
			// 如果失败了就触发 un-reserve plugins
			fwk.RunReservePluginsUnreserve(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)
			if err := sched.Cache.ForgetPod(assumedPod); err != nil {
				klog.ErrorS(err, "scheduler cache ForgetPod failed")
			} else {
				// "Forget"ing an assumed Pod in binding cycle should be treated as a PodDelete event,
				// as the assumed Pod had occupied a certain amount of resources in scheduler cache.
				// TODO(#103853): de-duplicate the logic.
				sched.SchedulingQueue.MoveAllToActiveOrBackoffQueue(internalqueue.AssignedPodDelete, nil)
			}
			sched.handleSchedulingFailure(ctx, fwk, assumedPodInfo, fmt.Errorf("binding rejected: %w", err), SchedulerError, clearNominatedNode)
			return
		}
		// Calculating nodeResourceString can be heavy. Avoid it if klog verbosity is below 2.
		klog.V(2).InfoS("Successfully bound pod to node", "pod", klog.KObj(pod), "node", scheduleResult.SuggestedHost, "evaluatedNodes", scheduleResult.EvaluatedNodes, "feasibleNodes", scheduleResult.FeasibleNodes)
		metrics.PodScheduled(fwk.ProfileName(), metrics.SinceInSeconds(start))
		metrics.PodSchedulingAttempts.Observe(float64(podInfo.Attempts))
		metrics.PodSchedulingDuration.WithLabelValues(getAttemptsLabel(podInfo)).Observe(metrics.SinceInSeconds(podInfo.InitialAttemptTimestamp))

		// 运行 "postbind" 插件
        // 是通知性的扩展点,该插件在绑定 Pod 后调用,可用于清理相关资源()。
		fwk.RunPostBindPlugins(bindingCycleCtx, state, assumedPod, scheduleResult.SuggestedHost)

		// At the end of a successful binding cycle, move up Pods if needed.
		if len(podsToActivate.Map) != 0 {
			sched.SchedulingQueue.Activate(podsToActivate.Map)
			// Unlike the logic in scheduling cycle, we don't bother deleting the entries
			// as `podsToActivate.Map` is no longer consumed.
		}
	}()
}

调度上下文中的失败流程

上面说到的都是正常的请求,下面会对失败的请求是如何重试的进行分析,而 scheduler 中关于失败处理方面相关的属性会涉及到上面 scheduler 结构中的 backoffQunschedulablePods

  • backoffQ:也是一个 heap 类型的优先级队列,存放的是不可调度的Pod
  • unschedulablePods :保存确定不可被调度的Pod,一个map类型

backoffQ 与 unschedulablePods 会在初始化 scheduler 时初始化,

func NewPriorityQueue(
	lessFn framework.LessFunc,
	informerFactory informers.SharedInformerFactory,
	opts ...Option,
) *PriorityQueue {
	options := defaultPriorityQueueOptions
	for _, opt := range opts {
		opt(&options)
	}

	comp := func(podInfo1, podInfo2 interface{}) bool {
		pInfo1 := podInfo1.(*framework.QueuedPodInfo)
		pInfo2 := podInfo2.(*framework.QueuedPodInfo)
		return lessFn(pInfo1, pInfo2)
	}

	if options.podNominator == nil {
		options.podNominator = NewPodNominator(informerFactory.Core().V1().Pods().Lister())
	}

	pq := &PriorityQueue{
		PodNominator:                      options.podNominator,
		clock:                             options.clock,
		stop:                              make(chan struct{}),
		podInitialBackoffDuration:         options.podInitialBackoffDuration,
		podMaxBackoffDuration:             options.podMaxBackoffDuration,
		podMaxInUnschedulablePodsDuration: options.podMaxInUnschedulablePodsDuration,
		activeQ:                           heap.NewWithRecorder(podInfoKeyFunc, comp, metrics.NewActivePodsRecorder()),
		unschedulablePods:                 newUnschedulablePods(metrics.NewUnschedulablePodsRecorder()),
		moveRequestCycle:                  -1,
		clusterEventMap:                   options.clusterEventMap,
	}
	pq.cond.L = &pq.lock
    // 初始化backoffQ
    // NewWithRecorder作为一个可选的 metricRecorder 的 Heap 对象。
    // podInfoKeyFunc是一个函数,返回错误与字符串
    // pq.podsCompareBackoffCompleted 比较两个pod的回退时间,如果第一个在第二个之前为true,
    // 反之 false
	pq.podBackoffQ = heap.NewWithRecorder(podInfoKeyFunc, pq.podsCompareBackoffCompleted, metrics.NewBackoffPodsRecorder())
	pq.nsLister = informerFactory.Core().V1().Namespaces().Lister()

	return pq
}

对于初始化 backoffQ 会产生的两个函数,getBackoffTimecalculateBackoffDuration

// getBackoffTime returns the time that podInfo completes backoff
func (p *PriorityQueue) getBackoffTime(podInfo *framework.QueuedPodInfo) time.Time {
	duration := p.calculateBackoffDuration(podInfo)
	backoffTime := podInfo.Timestamp.Add(duration)
	return backoffTime
}

// calculateBackoffDuration is a helper function for calculating the backoffDuration
// based on the number of attempts the pod has made.
func (p *PriorityQueue) calculateBackoffDuration(podInfo *framework.QueuedPodInfo) time.Duration {
	duration := p.podInitialBackoffDuration
	for i := 1; i < podInfo.Attempts; i++ {
		// Use subtraction instead of addition or multiplication to avoid overflow.
		if duration > p.podMaxBackoffDuration-duration {
			return p.podMaxBackoffDuration
		}
		duration += duration
	}
	return duration
}

对于整个故障错误会按照如下流程进行,在初始化 scheduler 会注册一个 Error 函数,这个函数用作对不可调度Pod进行处理,实际上被注册的函数是 MakeDefaultErrorFunc。这个函数将作为 Error 函数被调用。

sched := newScheduler(
    schedulerCache,
    extenders,
    internalqueue.MakeNextPodFunc(podQueue),
    MakeDefaultErrorFunc(client, podLister, podQueue, schedulerCache),
    stopEverything,
    podQueue,
    profiles,
    client,
    snapshot,
    options.percentageOfNodesToScore,
)

而在 调度周期中,也就是 scheduleOne 可以看到,每个扩展点操作失败后都会调用 handleSchedulingFailure 而该函数,使用了注册的 Error 函数来处理Pod

func (sched *Scheduler) scheduleOne(ctx context.Context) {
	...
	defer cancel()
	scheduleResult, err := sched.SchedulePod(schedulingCycleCtx, fwk, state, pod)
	if err != nil {

		var nominatingInfo *framework.NominatingInfo
		if fitError, ok := err.(*framework.FitError); ok {
			if !fwk.HasPostFilterPlugins() {
				klog.V(3).InfoS("No PostFilter plugins are registered, so no preemption will be performed")
			} else {

				result, status := fwk.RunPostFilterPlugins(ctx, state, pod, fitError.Diagnosis.NodeToStatusMap)
				if status.Code() == framework.Error {
					klog.ErrorS(nil, "Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
				} else {
					fitError.Diagnosis.PostFilterMsg = status.Message()
					klog.V(5).InfoS("Status after running PostFilter plugins for pod", "pod", klog.KObj(pod), "status", status)
				}
				if result != nil {
					nominatingInfo = result.NominatingInfo
				}
			}

			metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
		} else if err == ErrNoNodesAvailable {
			nominatingInfo = clearNominatedNode
			// No nodes available is counted as unschedulable rather than an error.
			metrics.PodUnschedulable(fwk.ProfileName(), metrics.SinceInSeconds(start))
		} else {
			nominatingInfo = clearNominatedNode
			klog.ErrorS(err, "Error selecting node for pod", "pod", klog.KObj(pod))
			metrics.PodScheduleError(fwk.ProfileName(), metrics.SinceInSeconds(start))
		}
        // 处理不可调度Pod
		sched.handleSchedulingFailure(ctx, fwk, podInfo, err, v1.PodReasonUnschedulable, nominatingInfo)
		return
	}

来到了注册的 Error 函数 MakeDefaultErrorFunc

func MakeDefaultErrorFunc(client clientset.Interface, podLister corelisters.PodLister, podQueue internalqueue.SchedulingQueue, schedulerCache internalcache.Cache) func(*framework.QueuedPodInfo, error) {
	return func(podInfo *framework.QueuedPodInfo, err error) {
		pod := podInfo.Pod
		if err == ErrNoNodesAvailable {
			klog.V(2).InfoS("Unable to schedule pod; no nodes are registered to the cluster; waiting", "pod", klog.KObj(pod))
		} else if fitError, ok := err.(*framework.FitError); ok {
			// Inject UnschedulablePlugins to PodInfo, which will be used later for moving Pods between queues efficiently.
			podInfo.UnschedulablePlugins = fitError.Diagnosis.UnschedulablePlugins
			klog.V(2).InfoS("Unable to schedule pod; no fit; waiting", "pod", klog.KObj(pod), "err", err)
		} else if apierrors.IsNotFound(err) {
			klog.V(2).InfoS("Unable to schedule pod, possibly due to node not found; waiting", "pod", klog.KObj(pod), "err", err)
			if errStatus, ok := err.(apierrors.APIStatus); ok && errStatus.Status().Details.Kind == "node" {
				nodeName := errStatus.Status().Details.Name
				// when node is not found, We do not remove the node right away. Trying again to get
				// the node and if the node is still not found, then remove it from the scheduler cache.
				_, err := client.CoreV1().Nodes().Get(context.TODO(), nodeName, metav1.GetOptions{})
				if err != nil && apierrors.IsNotFound(err) {
					node := v1.Node{ObjectMeta: metav1.ObjectMeta{Name: nodeName}}
					if err := schedulerCache.RemoveNode(&node); err != nil {
						klog.V(4).InfoS("Node is not found; failed to remove it from the cache", "node", node.Name)
					}
				}
			}
		} else {
			klog.ErrorS(err, "Error scheduling pod; retrying", "pod", klog.KObj(pod))
		}

		// Check if the Pod exists in informer cache.
		cachedPod, err := podLister.Pods(pod.Namespace).Get(pod.Name)
		if err != nil {
			klog.InfoS("Pod doesn't exist in informer cache", "pod", klog.KObj(pod), "err", err)
			return
		}

		// In the case of extender, the pod may have been bound successfully, but timed out returning its response to the scheduler.
		// It could result in the live version to carry .spec.nodeName, and that's inconsistent with the internal-queued version.
		if len(cachedPod.Spec.NodeName) != 0 {
			klog.InfoS("Pod has been assigned to node. Abort adding it back to queue.", "pod", klog.KObj(pod), "node", cachedPod.Spec.NodeName)
			return
		}

		// As <cachedPod> is from SharedInformer, we need to do a DeepCopy() here.
		podInfo.PodInfo = framework.NewPodInfo(cachedPod.DeepCopy())
        // 添加到unschedulable队列中
		if err := podQueue.AddUnschedulableIfNotPresent(podInfo, podQueue.SchedulingCycle()); err != nil {
			klog.ErrorS(err, "Error occurred")
		}
	}
}

下面来到 AddUnschedulableIfNotPresent ,这个也是操作 backoffQunschedulablePods 的真正的动作

AddUnschedulableIfNotPresent 函数会吧无法调度的 pod 插入队列,除非它已经在队列中。通常情况下,PriorityQueue 将不可调度的 Pod 放在 unschedulablePods 中。但如果最近有 move request,则将 pod 放入 podBackoffQ 中。

func (p *PriorityQueue) AddUnschedulableIfNotPresent(pInfo *framework.QueuedPodInfo, podSchedulingCycle int64) error {
	p.lock.Lock()
	defer p.lock.Unlock()
	pod := pInfo.Pod
    // 如果已经存在则不添加
	if p.unschedulablePods.get(pod) != nil {
		return fmt.Errorf("Pod %v is already present in unschedulable queue", klog.KObj(pod))
	}
	// 检查是否在activeQ中
	if _, exists, _ := p.activeQ.Get(pInfo); exists {
		return fmt.Errorf("Pod %v is already present in the active queue", klog.KObj(pod))
	}
    // 检查是否在podBackoffQ中
	if _, exists, _ := p.podBackoffQ.Get(pInfo); exists {
		return fmt.Errorf("Pod %v is already present in the backoff queue", klog.KObj(pod))
	}

	// 在重新添加时,会刷新 Pod时间为最新操作的时间
	pInfo.Timestamp = p.clock.Now()

	for plugin := range pInfo.UnschedulablePlugins {
		metrics.UnschedulableReason(plugin, pInfo.Pod.Spec.SchedulerName).Inc()
	}
    // 如果接受到move request那么则放入BackoffQ
	if p.moveRequestCycle >= podSchedulingCycle {
		if err := p.podBackoffQ.Add(pInfo); err != nil {
			return fmt.Errorf("error adding pod %v to the backoff queue: %v", pod.Name, err)
		}
		metrics.SchedulerQueueIncomingPods.WithLabelValues("backoff", ScheduleAttemptFailure).Inc()
	} else {
        // 否则将放入到 unschedulablePods
		p.unschedulablePods.addOrUpdate(pInfo)
		metrics.SchedulerQueueIncomingPods.WithLabelValues("unschedulable", ScheduleAttemptFailure).Inc()

	}

	p.PodNominator.AddNominatedPod(pInfo.PodInfo, nil)
	return nil
}

在启动 scheduler 时,会将这两个队列异步启用两个loop来操作队列。表现在 Run()

func (p *PriorityQueue) Run() {
	go wait.Until(p.flushBackoffQCompleted, 1.0*time.Second, p.stop)
	go wait.Until(p.flushUnschedulablePodsLeftover, 30*time.Second, p.stop)
}

可以看到 flushBackoffQCompleted 作为 BackoffQ 实现;而 flushUnschedulablePodsLeftover 作为 UnschedulablePods 实现。

flushBackoffQCompleted 是用于将所有已完成回退的 pod 从 backoffQ 移到 activeQ

func (p *PriorityQueue) flushBackoffQCompleted() {
	p.lock.Lock()
	defer p.lock.Unlock()
	broadcast := false
	for { // 这就是heap实现的方法,窥视下,但不弹出
		rawPodInfo := p.podBackoffQ.Peek()
		if rawPodInfo == nil {
			break
		}
		pod := rawPodInfo.(*framework.QueuedPodInfo).Pod
		boTime := p.getBackoffTime(rawPodInfo.(*framework.QueuedPodInfo))
		if boTime.After(p.clock.Now()) {
			break
		}
		_, err := p.podBackoffQ.Pop() // 弹出一个
		if err != nil {
			klog.ErrorS(err, "Unable to pop pod from backoff queue despite backoff completion", "pod", klog.KObj(pod))
			break
		}
		p.activeQ.Add(rawPodInfo) // 放入到活动队列中
		metrics.SchedulerQueueIncomingPods.WithLabelValues("active", BackoffComplete).Inc()
		broadcast = true
	}

	if broadcast {
		p.cond.Broadcast()
	}
}

flushUnschedulablePodsLeftover 函数用于将在 unschedulablePods 中的存放时间超过 podMaxInUnschedulablePodsDuration 值的 pod 移动到 backoffQactiveQ 中。

podMaxInUnschedulablePodsDuration 会根据配置传入,当没有传入,也就是使用了 Deprecated 那么会为5分钟。

func NewOptions() *Options {
	o := &Options{
		SecureServing:  apiserveroptions.NewSecureServingOptions().WithLoopback(),
		Authentication: apiserveroptions.NewDelegatingAuthenticationOptions(),
		Authorization:  apiserveroptions.NewDelegatingAuthorizationOptions(),
		Deprecated: &DeprecatedOptions{
			PodMaxInUnschedulablePodsDuration: 5 * time.Minute,
		},

对于 flushUnschedulablePodsLeftover 就是做一个时间对比,然后添加到对应的队列中

func (p *PriorityQueue) flushUnschedulablePodsLeftover() {
	p.lock.Lock()
	defer p.lock.Unlock()

	var podsToMove []*framework.QueuedPodInfo
	currentTime := p.clock.Now()
	for _, pInfo := range p.unschedulablePods.podInfoMap {
		lastScheduleTime := pInfo.Timestamp
		if currentTime.Sub(lastScheduleTime) > p.podMaxInUnschedulablePodsDuration {
			podsToMove = append(podsToMove, pInfo)
		}
	}

	if len(podsToMove) > 0 {
		p.movePodsToActiveOrBackoffQueue(podsToMove, UnschedulableTimeout)
	}
}

总结调度上下文流程

  • 在构建一个 scheduler 时经历如下步骤:
    • 准备cache,informer,queue,错误处理函数等
    • 添加事件函数,会监听资源(如Pod),当有变动则触发对应事件函数,这是入站 activeQ
  • 构建完成后会 run,run时会run一个 SchedulingQueue,这个是作为不可调度队列
    • BackoffQ
    • UnschedulablePods
    • 不可调度队列会根据注册时定期消费队列中Pod将其添加到 activeQ
  • 启动一个 scheduleOne 的loop,这个是调度上下文中所有的扩展点的执行,也是 activeQ 的消费端
    • scheduleOne 获取 pod
    • 执行各个扩展点,如果出错则 Error 函数 MakeDefaultErrorFunc 将其添加到不可调度队列中
    • 回到不可调度队列中消费部分
07-22 07:49