问题描述
初学者ES问题在这里
将Spark Dataframe推送到Elastic Search的工作流程或步骤是什么?
根据研究,我认为我需要使用 spark. newAPIHadoopFile()方法.
From research, I believe I need to use the spark.newAPIHadoopFile() method.
但是,请仔细阅读 Elastic Search文档 ,以及其他Stack Q/A 我仍然对参数的格式有些困惑需要进入以及为什么
However, digging through the Elastic Search Documentation, and other Stack Q/A's I am still a little confused on what format the arguments need to be in and why
请注意我正在使用pyspark,这是ES的新表(尚不存在索引),并且df是5列(2个字符串类型,2个长类型和1个整数列表),具有约350万行
NOTE that I am using pyspark, this is a new table to ES (no index already exists), and the df is 5 columns (2 string types, 2 long types, and 1 list of ints) with ~3.5M rows.
推荐答案
设法找到答案,我将与大家分享. Spark DF(来自pyspark.sql)当前不支持newAPIHadoopFile()
方法;它不支持newAPIHadoopFile()
方法.但是,df.rdd.saveAsNewAPIHadoopFile()
也给了我错误.诀窍是通过以下函数将df转换为字符串
Managed to find an answer so I'll share. Spark DF's (from pyspark.sql) don't currently support the newAPIHadoopFile()
methods; however, df.rdd.saveAsNewAPIHadoopFile()
was giving me errors as well. The trick was to convert the df to strings via the following function
def transform(doc):
import json
import hashlib
_json = json.dumps(doc)
keys = doc.keys()
for key in keys:
if doc[key] == 'null' or doc[key] == 'None':
del doc[key]
if not doc.has_key('id'):
id = hashlib.sha224(_json).hexdigest()
doc['id'] = id
else:
id = doc['id']
_json = json.dumps(doc)
return (id, _json)
所以我的JSON工作流程是:
So my JSON workflow is:
1:df = spark.read.json('XXX.json')
2:rdd_mapped = df.rdd.map(lambda y: y.asDict())
3:final_rdd = rdd_mapped.map(transform)
4:
final_rdd.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf={ "es.resource" : "<INDEX> / <INDEX>", "es.mapping.id":"id",
"es.input.json": "true", "es.net.http.auth.user":"elastic",
"es.write.operation":"index", "es.nodes.wan.only":"false",
"es.net.http.auth.pass":"changeme", "es.nodes":"<NODE1>, <NODE2>, <NODE3>...",
"es.port":"9200" })
更多有关ES参数的信息可在此处找到(滚动到配置")
这篇关于如何将Spark数据框推送到弹性搜索(Pyspark)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!