本文介绍了如何对GridSearchCV中的数据执行标准化?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何对GridSearchCV中的数据进行标准化?
How to perform standardizing on the data in GridSearchCV?
这是代码.我不知道该怎么做.
Here is the code. I have no idea on how to do it.
import dataset
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
dataset = pd.read_excel('../dataset/dataset_experiment1.xlsx')
X = dataset.iloc[:,1:-1].values
y = dataset.iloc[:,66].values
from sklearn.model_selection import GridSearchCV
#from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
stdizer = StandardScaler()
print('===Grid Search===')
print('logistic regression')
model = LogisticRegression()
parameter_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}
grid_search = GridSearchCV(model, param_grid=parameter_grid, cv=kfold, scoring = scoring3)
grid_search.fit(X, y)
print('Best score: {}'.format(grid_search.best_score_))
print('Best parameters: {}'.format(grid_search.best_params_))
print('\n')
更新这是我尝试运行但得到的错误:
UpdateThis is what I try to run but get the error:
print('logistic regression')
model = LogisticRegression()
pipeline = Pipeline([('scale', StandardScaler()), ('clf', model)])
parameter_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}
grid_search = GridSearchCV(pipeline, param_grid=parameter_grid, cv=kfold, scoring = scoring3)
grid_search.fit(X, y)
print('Best score: {}'.format(grid_search.best_score_))
print('Best parameters: {}'.format(grid_search.best_params_))
print('\n')
推荐答案
演示:
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.33)
pipe = Pipeline([
('scale', StandardScaler()),
('clf', LogisticRegression())
])
param_grid = [
{
'clf__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
'clf__C': np.logspace(-3, 1, 5),
},
]
grid = GridSearchCV(pipe, param_grid=param_grid, cv=3, n_jobs=-1, verbose=2)
grid.fit(X_train, y_train)
这篇关于如何对GridSearchCV中的数据执行标准化?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!