本文介绍了在 GridSearchCV 中使用精度作为评分时如何指定正标签的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
model = sklearn.model_selection.GridSearchCV(
estimator = est,
param_grid = param_grid,
scoring = 'precision',
verbose = 1,
n_jobs = 1,
iid = True,
cv = 3)
在sklearn.metrics.precision_score(y, y_pred,pos_label=[0])
中,我可以指定正标签,如何在GridSearchCV中也指定?
In sklearn.metrics.precision_score(y, y_pred,pos_label=[0])
, I can specify the positive label, how can I specify this in GridSearchCV too?
如果无法指定,使用自定义评分时,如何定义?
If there is no way to specify, when using custom scoring, how can I define?
我已经试过了:
custom_score = make_scorer(precision_score(y, y_pred,pos_label=[0]),
greater_is_better=True)
但我有错误:
NameError: name 'y_pred' is not defined
推荐答案
阅读docs,您可以将任何 kwargs
传递到 make_scorer
中,它们将自动传递到 score_func
可调用对象中.
Reading the docs, you can pass any kwargs
into make_scorer
and they will be automatically passed into the score_func
callable.
from sklearn.metrics import precision_score, make_scorer
custom_scorer = make_scorer(precision_score, greater_is_better=True, pos_label=0)
然后你把这个 custom_scorer
传递给 GridSearchCV
:
Then you pass this custom_scorer
to GridSearchCV
:
gs = GridSearchCV(est, ..., scoring=custom_scorer)
这篇关于在 GridSearchCV 中使用精度作为评分时如何指定正标签的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!