本文介绍了我们如何在Python上为自定义的ANN模型构建ROC曲线?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试在Python上构建自定义的ANN模型.构建模型的方法如下:
I am trying to build a customized ANN Model on Python. My method, where I have built the model, is as follows:
def binary_class(x_train,nodes,activation,n):
#Creating customized ANN Model
model=Sequential()
for i in range(len(nodes)):
if(i==0):
if(activation=='sigmoid'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_uniform',activation='sigmoid',input_dim = len(x_train[1])))
if(activation=='relu'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_uniform',activation='relu',input_dim = len(x_train[1])))
if(activation=='tanh'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_normal',activation='tanh',input_dim = len(x_train[1])))
if(activation=='softmax'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_normal',activation='softmax',input_dim = len(x_train[1])))
if(activation== 'elu'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_normal',activation='elu',input_dim = len(x_train[1])))
if(activation=='softplus'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_normal',activation='softplus',input_dim = len(x_train[1])))
else:
if(activation=='sigmoid'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_uniform',activation='sigmoid'))
if(activation=='relu'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_uniform',activation='relu'))
if(activation=='tanh'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_normal',activation='tanh'))
if(activation=='softmax'):
model.add(Dense(units = nodes[i], kernel_initializer = 'glorot_uniform',activation='softmax'))
if(activation=='elu'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_normal',activation='elu'))
if(activation=='softplus'):
model.add(Dense(units = nodes[i], kernel_initializer = 'he_normal',activation='softplus'))
model.add(Dropout(n))
#Adding output layer
model.add(Dense(units=1, kernel_initializer = 'glorot_uniform',activation='sigmoid'))
return model
我的优化器功能如下:
def optibin(model,opt,x_train,y_train,spl,bs,epochs,x_test,y_test):
#Choosing the proper optimizer to use
if(opt=='sgd'):
print("Enter Momentum:")
mom=float(input())
lr=float(input("Enter value of Learning rate:"))
opti=keras.optimizers.SGD(learning_rate=lr, momentum=mom, nesterov=False)
if(opt=='Adam'):
lr=float(input("Enter value of Learning rate:"))
opti=keras.optimizers.Adam(learning_rate=lr)
if(opt=='Adamax'):
lr=float(input("Enter value of Learning rate:"))
beta_1=float(input("Enter value of beta 1 (Generally close to 1)"))
beta_2=float(input("Enter value of beta 2 (Generally close to 1)"))
opti=keras.optimizers.Adamax(learning_rate=lr, beta_1=beta_1, beta_2=beta_2)
if(opt=='Nadam'):
lr=float(input("Enter value of Learning rate:"))
beta_1=float(input("Enter value of beta 1 (Generally close to 1)"))
beta_2=float(input("Enter value of beta 2 (Generally close to 1)"))
opti=keras.optimizers.Nadam(learning_rate=lr, beta_1=beta_1, beta_2=beta_2)
if(opt=='RMSprop'):
lr=float(input("Enter value of Learning rate:"))
opti=keras.optimizers.RMSprop(learning_rate=lr)
if(opt=='Adagrad'):
lr=float(input("Enter value of Learning rate:"))
opti=keras.optimizers.Adagrad(learning_rate=lr)
model.compile(optimizer = opti, loss = 'binary_crossentropy', metrics = ['accuracy'])
model_history=model.fit(x_train, y_train,validation_split=spl, batch_size = bs,epochs = epochs)
return model_history, model
我必须尝试创建模型的性能指标,其中之一就是构建ROC和AUC.我用sklearn制作了混淆矩阵,特异性和敏感性.但是我还需要绘制ROC曲线.如何从中建立ROC曲线?
I have to try to create the performance metrics of the model, one of which would be to build the ROC and the AUC. I used sklearn to make the confusion matrix, specificity and sensitivity. But I need to make a ROC curve as well.How can we build the ROC curve from this?
推荐答案
这种方法应该可以解决问题:
Something like this should do the trick:
from sklearn import metrics
fpr, tpr, thresholds = metrics.roc_curve(true_values, predicted_values, pos_label=1)
roc_auc = metrics.auc(fpr, tpr)
lw = 2
plt.figure()
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--', alpha=0.15)
plt.plot(fpr, tpr, lw=lw, label=f'ROC curve (area = {roc_auc: 0.2f})')
plt.xlabel('(1–Specificity) - False Positive Rate')
plt.ylabel('Sensitivity - True Positive Rate')
plt.title(f'Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
这篇关于我们如何在Python上为自定义的ANN模型构建ROC曲线?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!