本文介绍了从列表或元组中显式选择项目的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有以下 Python 列表(也可以是元组):

myList = ['foo', 'bar', 'baz', 'quux']

我可以说

>>>我的列表[0:3]['foo', 'bar', 'baz']>>>myList[::2]['foo', 'baz']>>>myList[1::2]['bar', 'quux']

如何明确挑选索引没有特定模式的项目?例如,我想选择[0,2,3].或者从一个包含 1000 个项目的非常大的列表中,我想选择 [87, 342, 217, 998, 500].是否有一些 Python 语法可以做到这一点?看起来像的东西:

>>>myBigList[87, 342, 217, 998, 500]
解决方案
list( myBigList[i] for i in [87, 342, 217, 998, 500] )

我将答案与 python 2.5.2 进行了比较:

  • 19.7 usec: [ myBigList[i] for i in [87, 342, 217, 998, 500] ]

  • 20.6 使用:map(myBigList.__getitem__, (87, 342, 217, 998, 500))

  • 22.7 使用:itemgetter(87, 342, 217, 998, 500)(myBigList)

  • 24.6 usec: list( myBigList[i] for i in [87, 342, 217, 998, 500] )

请注意,在 Python 3 中,第 1 个已更改为与第 4 个相同.

另一种选择是从 numpy.array 开始,它允许通过列表或 numpy.array 进行索引:

>>>导入 numpy>>>myBigList = numpy.array(range(1000))>>>myBigList[(87, 342, 217, 998, 500)]回溯(最近一次调用最后一次):文件<stdin>",第 1 行,在 <module> 中索引错误:无效索引>>>myBigList[[87, 342, 217, 998, 500]]数组([ 87, 342, 217, 998, 500])>>>myBigList[numpy.array([87, 342, 217, 998, 500])]数组([ 87, 342, 217, 998, 500])

tuple 与切片的工作方式不同.

I have the following Python list (can also be a tuple):

myList = ['foo', 'bar', 'baz', 'quux']

I can say

>>> myList[0:3]
['foo', 'bar', 'baz']
>>> myList[::2]
['foo', 'baz']
>>> myList[1::2]
['bar', 'quux']

How do I explicitly pick out items whose indices have no specific patterns? For example, I want to select [0,2,3]. Or from a very big list of 1000 items, I want to select [87, 342, 217, 998, 500]. Is there some Python syntax that does that? Something that looks like:

>>> myBigList[87, 342, 217, 998, 500]
解决方案
list( myBigList[i] for i in [87, 342, 217, 998, 500] )


I compared the answers with python 2.5.2:

  • 19.7 usec: [ myBigList[i] for i in [87, 342, 217, 998, 500] ]

  • 20.6 usec: map(myBigList.__getitem__, (87, 342, 217, 998, 500))

  • 22.7 usec: itemgetter(87, 342, 217, 998, 500)(myBigList)

  • 24.6 usec: list( myBigList[i] for i in [87, 342, 217, 998, 500] )

Note that in Python 3, the 1st was changed to be the same as the 4th.


Another option would be to start out with a numpy.array which allows indexing via a list or a numpy.array:

>>> import numpy
>>> myBigList = numpy.array(range(1000))
>>> myBigList[(87, 342, 217, 998, 500)]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: invalid index
>>> myBigList[[87, 342, 217, 998, 500]]
array([ 87, 342, 217, 998, 500])
>>> myBigList[numpy.array([87, 342, 217, 998, 500])]
array([ 87, 342, 217, 998, 500])

The tuple doesn't work the same way as those are slices.

这篇关于从列表或元组中显式选择项目的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-28 18:39
查看更多