本文介绍了计算python中非线性曲线拟合的确定系数(R2)和均方根误差(RMSE)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何为Python中的非线性曲线拟合计算确定系数(R2)和均方根误差(RMSE).下面的代码会一直进行直到曲线拟合.那么如何计算R2和RMSE?
How to calculate coefficient of determination (R2) and root mean square error (RMSE) for non linear curve fitting in python. Following code does until curve fitting. Then how to calculate R2 and RMSE?
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(x, a, b, c):
return a * np.exp(-b * x) + c
x = np.linspace(0,4,50)
y = func(x, 2.5, 1.3, 0.5)
yn = y + 0.2*np.random.normal(size=len(x))
popt, pcov = curve_fit(func, x, yn)
plt.figure()
plt.plot(x, yn, 'ko', label="Original Noised Data")
plt.plot(x, func(x, *popt), 'r-', label="Fitted Curve")
plt.legend()
plt.show()
推荐答案
您可以这样做:
print "Mean Squared Error: ", np.mean((y-func(x, *popt))**2)
ss_res = np.dot((yn - func(x, *popt)),(yn - func(x, *popt)))
ymean = np.mean(yn)
ss_tot = np.dot((yn-ymean),(yn-ymean))
print "Mean R :", 1-ss_res/ss_tot
这直接采用了定义,例如在Wikipedia中: http://en.wikipedia.org/wiki/Coefficient_of_determination#Definitions
This is taking the definitions directly, as for example in the wikipedia:http://en.wikipedia.org/wiki/Coefficient_of_determination#Definitions
这篇关于计算python中非线性曲线拟合的确定系数(R2)和均方根误差(RMSE)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!