本文介绍了如何在seaborn/matplotlib中绘制和注释分组条的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个如下所示的数据框:

我使用条形图来表示每一行的订阅者.这就是我所做的:

data = channels.sort_values('subscribers', Ascending=False).head(5)图表 = sns.barplot(x = 'name', y='subscribers',data=data)chart.set_xticklabels(chart.get_xticklabels(),旋转= 90)对于 chart.patches 中的 p:chart.annotate("{:,.2f}".format(p.get_height(), '.2f'), (p.get_x() + p.get_width()/2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points')

现在我想在同一张图中显示每个用户的video_count".目标是比较订阅者数量与视频数量之间的关系.我如何在图表上描述这一点?

解决方案

数据

  • 需要使用

    注释资源 - 来自 matplotlib v3.4.2

    使用 seaborn v0.11.1

    绘图
    • 在 3.4.2 版本之前使用 matplotlib
    • 请注意,使用 .annotate.patches 比使用 .bar_label 更加冗长.

    # plot图, ax = plt.subplots(figsize=(12, 6))sns.barplot(x='name', y='values', data=dfl,hue='cats', ax=ax)ax.set_xticklabels(chart.get_xticklabels(), 旋转=0)ax.set_yscale('log')对于 ax.patches 中的 p:ax.annotate(f"{p.get_height():.0f}", (p.get_x() + p.get_width()/2., p.get_height()),ha='center', va='center', xytext =(0, 7), textcoords='offset points')

    I have a dataframe that looks like this:

    I have used a barplot to represent the subscribers for each row. This is what I did:

    data = channels.sort_values('subscribers', ascending=False).head(5)
    chart = sns.barplot(x = 'name', y='subscribers',data=data)
    chart.set_xticklabels(chart.get_xticklabels(), rotation=90)
    for p in chart.patches:
        chart.annotate("{:,.2f}".format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points')
    

    Now I want to show the 'video_count' for each user on this same plot. The goal is to compare how the number of subscribers relate to the number of videos. How can I depict this on the chart?

    解决方案

    Data

    • The data needs to be converted to a long format using .melt
    • Because of the scale of values, 'log' is used for the yscale
    • All of the categories in 'cats' are included for the example.
      • Select only the desired columns before melting, or use dfl = dfl[dfl.cats.isin(['sub', 'vc']) to filter for the desired 'cats'.

    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    # setup dataframe
    data = {'vc': [76, 47, 140, 106, 246],
            'tv': [29645400, 28770702, 50234486, 30704017, 272551386],
            'sub': [66100, 15900, 44500, 37000, 76700],
            'name': ['a', 'b', 'c', 'd', 'e']}
    df = pd.DataFrame(data)
    
        vc        tv    sub name
    0   76  29645400  66100    a
    1   47  28770702  15900    b
    2  140  50234486  44500    c
    
    # convert to long form
    dfl = (df.melt(id_vars='name', var_name='cats', value_name='values')
           .sort_values('values', ascending=False).reset_index(drop=True))
    
      name cats     values
    0    e   tv  272551386
    1    c   tv   50234486
    2    d   tv   30704017
    

    Updated as of matplotlib v3.4.2

    # plot
    fig, ax = plt.subplots(figsize=(12, 6))
    sns.barplot(x='name', y='values', data=dfl, hue='cats', ax=ax)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=0)
    ax.set_yscale('log')
    
    for c in ax.containers:
        # set the bar label
        ax.bar_label(c, fmt='%.0f', label_type='edge', padding=1)
    
    # pad the spacing between the number and the edge of the figure
    ax.margins(y=0.1)
    

    Annotation Resources - from matplotlib v3.4.2

    Plot with seaborn v0.11.1

    • Using matplotlib before version 3.4.2
    • Note that using .annotate and .patches is much more verbose than with .bar_label.

    # plot
    fig, ax = plt.subplots(figsize=(12, 6))
    sns.barplot(x='name', y='values', data=dfl, hue='cats', ax=ax)
    ax.set_xticklabels(chart.get_xticklabels(), rotation=0)
    ax.set_yscale('log')
    
    for p in ax.patches:
        ax.annotate(f"{p.get_height():.0f}", (p.get_x() + p.get_width() / 2., p.get_height()),
                    ha='center', va='center', xytext =(0, 7), textcoords='offset points')
    

    这篇关于如何在seaborn/matplotlib中绘制和注释分组条的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-11 13:42