本文介绍了R中带有mgcv的粗薄板样条拟合(薄板样条插值)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

背景

我正在尝试在统计学习简介:

Background

I am trying to replicate figure 2.6 in the book An Introduction to Statistical Learning:

到目前为止,我尝试了什么?

我试图复制先前的图2.5,它是平滑的薄板样条曲线拟合,不确定是否成功.

What have I tried so far?

I tried to replicate the previous figure 2.5, a smooth thin-plate spline fit, not sure if succesfully.

income_2 <- read.csv("http://www-bcf.usc.edu/~gareth/ISL/Income2.csv")
library(mgcv)
model1 <- gam(Income ~ te(Education, Seniority, bs=c("tp", "tp")), data = income_2)
x <- range(income_2$Education)
x <- seq(x[1], x[2], length.out=30)
y <- range(income_2$Seniority)
y <- seq(y[1], y[2], length.out=30)
z <- outer(x,y,
           function(Education,Seniority)
                     predict(model1, data.frame(Education,Seniority)))
p <- persp(x,y,z, theta=30, phi=30,
           col="yellow",expand = 0.5,shade = 0.2,
           xlab="Education", ylab="Seniority", zlab="Income")
obs <- trans3d(income_2$Education, income_2$Seniority,income_2$Income,p)
pred <- trans3d(income_2$Education, income_2$Seniority,fitted(model1),p)
points(obs, col="red",pch=16)
segments(obs$x, obs$y, pred$x, pred$y)

双重问题

  1. 我是否使用游戏?我使用的是smooth.terms bs="tp",文档中说:它们是薄板样条线的降阶版本,并使用薄板样条线罚分."
  2. 如何创建粗糙的薄板样条曲线拟合,使训练数据误差为零? (上面的第一个数字)
  1. Did I create a proper smooth thin-plate with gam? I am using as smooth.terms bs="tp", and the documentation says 'They are reduced rank versions of the thin plate splines and use the thin plate spline penalty.'
  2. How can I can create a rough thin-plate spline fit making zero errors on the training data? (First figure above)

推荐答案

income_2 <- structure(list(Education = c(21.5862068965517, 18.2758620689655,
12.0689655172414, 17.0344827586207, 19.9310344827586, 18.2758620689655,
19.9310344827586, 21.1724137931034, 20.3448275862069, 10, 13.7241379310345,
18.6896551724138, 11.6551724137931, 16.6206896551724, 10, 20.3448275862069,
14.1379310344828, 16.6206896551724, 16.6206896551724, 20.3448275862069,
18.2758620689655, 14.551724137931, 17.448275862069, 10.4137931034483,
21.5862068965517, 11.2413793103448, 19.9310344827586, 11.6551724137931,
12.0689655172414, 17.0344827586207), Seniority = c(113.103448275862,
119.310344827586, 100.689655172414, 187.586206896552, 20, 26.2068965517241,
150.344827586207, 82.0689655172414, 88.2758620689655, 113.103448275862,
51.0344827586207, 144.137931034483, 20, 94.4827586206897, 187.586206896552,
94.4827586206897, 20, 44.8275862068966, 175.172413793103, 187.586206896552,
100.689655172414, 137.931034482759, 94.4827586206897, 32.4137931034483,
20, 44.8275862068966, 168.965517241379, 57.2413793103448, 32.4137931034483,
106.896551724138), Income = c(99.9171726114381, 92.579134855529,
34.6787271520874, 78.7028062353695, 68.0099216471551, 71.5044853814318,
87.9704669939115, 79.8110298331255, 90.00632710858, 45.6555294997364,
31.9138079371295, 96.2829968022869, 27.9825049000603, 66.601792415137,
41.5319924201478, 89.00070081522, 28.8163007592387, 57.6816942573605,
70.1050960424457, 98.8340115435447, 74.7046991976891, 53.5321056283034,
72.0789236655191, 18.5706650327685, 78.8057842852386, 21.388561306174,
90.8140351180409, 22.6361626208955, 17.613593041445, 74.6109601985289
)), .Names = c("Education", "Seniority", "Income"), row.names = c(NA,
-30L), class = "data.frame")

library(mgcv)

首先,您可以将s(Education, Seniority, bs = 'tp')用于二元薄板样条曲线,而不是使用张量积构造.薄板样条线在任何尺寸上都是明确定义的.

First of all, you can just use s(Education, Seniority, bs = 'tp') for a bivariate thin-plate spline rather than using tensor product construction. A thin-plate spline is well-defined on any dimension.

第二,mgcv不会进行回归而不是插值,因此,如果不进行调整,就无法使拟合的样条曲线遍历所有点.薄板样条的调整包括:

Secondly, mgcv does regression not interpolation, so without a tweak you can't have the fitted spline running through all points. The tweak for a thin-plate spline includes:

  1. 通过将k设置为精确的唯一采样点数(如果您有2000个以上的唯一数据位置,则也设置为xt)来禁用bs = 'tp'后面的低秩逼近;
  2. 设置sp = 0以禁用样条线的惩罚.
  1. disable low-rank approximation behind bs = 'tp', by setting k to exactly the number of unique sampling points (and xt as well if you have more than 2000 unique data locations);
  2. set sp = 0 to disable penalization of the spline.

数据集income_2中唯一采样位置的数量为

The number of unique sampling locations in your dataset income_2 is

xt <- unique(income_2[c("Education", "Seniority")])
nrow(xt)
#[1] 30

因为30小于2000,所以我们可以设置k = 30,而无需将xt传递给s(, bs = 'tp').

Because 30 is smaller than 2000, we can just set k = 30 and don't need to pass xt to s(, bs = 'tp').

interpolation_model <- gam(Income ~ s(Education, Seniority, k = 30, sp = 0),
                           data = income_2)
interpolation_model$residuals
# [1]  2.131628e-13  2.728484e-12  4.561684e-12  1.264766e-12  3.495870e-12
# [6]  4.177991e-12 -1.023182e-12  1.193712e-12  2.231104e-12  6.878054e-12
#[11]  6.309619e-12  6.679102e-13  7.574386e-12  3.637979e-12  4.227729e-12
#[16]  1.790568e-12  4.376943e-12  5.130119e-12  8.242296e-13 -6.536993e-13
#[21]  2.771117e-12  1.811884e-12  3.495870e-12  9.141132e-12  2.117417e-12
#[26]  7.243983e-12 -3.979039e-13  6.352252e-12  6.203038e-12  3.652190e-12

现在您看到所有残差均为零.

Now you see that all residuals are zero.

您还可以查找直接执行薄板样条插值的其他程序包.

You can also look for other packages that do thin-plate spline interpolation directly.

薄板样条线是各向同性/径向的,如果变量的比例不同,请小心!

因为两个变量的比例差异很大.您要先对两个变量进行标准化,然后再拟合薄板样条线.

Because your two variables differ in scale greatly. You want to standardize your two variables first, then fit a thin plate spline.

## this is how your original data look like on the 2D domain
with(income_2, plot(Education, Seniority, asp = 1))
## let's scale it
xt_scaled <- scale(xt)
dat <- data.frame(xt_scaled, Income = income_2$Income)

with(dat, plot(Education, Seniority, asp = 1))
## fit a model on scaled data
interpolation_model <- gam(Income ~ s(Education, Seniority, k = 30, sp = 0),
                           data = dat)

## grid on the transformed space
x <- range(dat$Education)
x <- seq(x[1], x[2], length.out=30)
y <- range(dat$Seniority)
y <- seq(y[1], y[2], length.out=30)

## prediction on the transformed space
newdat <- expand.grid(Education = x, Seniority = y)
z <- matrix(predict(interpolation_model, newdat), nrow = length(x))

现在要生成图,我们想将网格反向转换为其原始比例.请注意,这不需要转换预测值.

Now to produce plot, we want to back transform the grid to its original scale. Note there this is no need to transform the predicted values.

## back transform the grid
scaled_center <- attr(xt_scaled, "scaled:center")
#Education Seniority
# 16.38621  93.86207
scaled_scale <- attr(xt_scaled, "scaled:scale")
#Education Seniority
# 3.810622 55.715623
xx <- x * scaled_scale[1] + scaled_center[1]
yy <- y * scaled_scale[2] + scaled_center[2]

## use `xx`, `yy` and `z`
p <- persp(xx, yy, z, theta = 30, phi = 30,
           col = "yellow",expand = 0.5, shade = 0.2,
           xlab = "Education", ylab = "Seniority", zlab = "Income")
obs <- trans3d(income_2$Education, income_2$Seniority, income_2$Income, p)
pred <- trans3d(income_2$Education, income_2$Seniority, fitted(interpolation_model), p)
points(obs, col="red",pch=16)
segments(obs$x, obs$y, pred$x, pred$y)

这篇关于R中带有mgcv的粗薄板样条拟合(薄板样条插值)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-22 21:15
查看更多