本文介绍了是否可以numpy.vectorize一个实例方法?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我发现 numpy.vectorize 允许将期望单个数字作为输入的普通"函数转换为函数,该函数也可以将输入列表转换为该函数已映射到每个输入的列表.例如,以下测试通过:

I've found that the numpy.vectorize allows one to convert 'ordinary' functions which expect a single number as input to a function which can also convert a list of inputs into a list in which the function has been mapped to each input. For example, the following tests pass:

import numpy as np
import pytest


@np.vectorize
def f(x):
    if x == 0:
        return 1
    else:
        return 2


def test_1():
    assert list(f([0, 1, 2])) == [1, 2, 2]

def test_2():
    assert f(0) == 1

if __name__ == "__main__":
    pytest.main([__file__])

但是,我无法使它用于使用实例属性的实例方法.例如:

However, I've not been able to get this to work for an instance method which makes use of an instance attribute. For example:

class Dummy(object):
    def __init__(self, val=1):
        self.val = val

    @np.vectorize
    def f(self, x):
        if x == 0:
            return self.val
        else:
            return 2


def test_3():
    assert list(Dummy().f([0, 1, 2])) == [1, 2, 2]

此测试失败:

=================================== FAILURES ===================================
____________________________________ test_3 ____________________________________

    def test_3():
>       assert list(Dummy().f([0, 1, 2])) == [1, 2, 2]

test_numpy_vectorize.py:31: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/numpy/lib/function_base.py:2739: in __call__
    return self._vectorize_call(func=func, args=vargs)
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/numpy/lib/function_base.py:2809: in _vectorize_call
    ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <numpy.lib.function_base.vectorize object at 0x106546470>
func = <function Dummy.f at 0x10653a2f0>, args = [array([0, 1, 2])]

    def _get_ufunc_and_otypes(self, func, args):
        """Return (ufunc, otypes)."""
        # frompyfunc will fail if args is empty
        if not args:
            raise ValueError('args can not be empty')

        if self.otypes is not None:
            otypes = self.otypes
            nout = len(otypes)

            # Note logic here: We only *use* self._ufunc if func is self.pyfunc
            # even though we set self._ufunc regardless.
            if func is self.pyfunc and self._ufunc is not None:
                ufunc = self._ufunc
            else:
                ufunc = self._ufunc = frompyfunc(func, len(args), nout)
        else:
            # Get number of outputs and output types by calling the function on
            # the first entries of args.  We also cache the result to prevent
            # the subsequent call when the ufunc is evaluated.
            # Assumes that ufunc first evaluates the 0th elements in the input
            # arrays (the input values are not checked to ensure this)
            args = [asarray(arg) for arg in args]
            if builtins.any(arg.size == 0 for arg in args):
                raise ValueError('cannot call `vectorize` on size 0 inputs '
                                 'unless `otypes` is set')

            inputs = [arg.flat[0] for arg in args]
>           outputs = func(*inputs)
E           TypeError: f() missing 1 required positional argument: 'x'

是否可以将numpy.vectorize应用于实例方法?

Is it possible to apply numpy.vectorize to an instance method?

推荐答案

无需修改类的简单解决方案

您可以直接在实例的方法上使用np.vectorize:

class Dummy(object):

    def __init__(self, val=1):
        self.val = val

    def f(self, x):
        if x == 0:
            return self.val
        else:
            return 2


vec_f = np.vectorize(Dummy().f) 


def test_3():
    assert list(vec_f([0, 1, 2])) == [1, 2, 2]

test_3()

您还可以在__init__中创建矢量化函数vec_f:

You can also create a vectorized function vec_f in your __init__:

class Dummy(object):

    def __init__(self, val=1):
        self.val = val
        self.vec_f = np.vectorize(self.f) 

    def f(self, x):
        if x == 0:
            return self.val
        else:
            return 2


def test_3():
    assert list(Dummy().vec_f([0, 1, 2])) == [1, 2, 2]

或使用其他命名方案:

class Dummy(object):

    def __init__(self, val=1):
        self.val = val
        self.f = np.vectorize(self.scalar_f) 

    def scalar_f(self, x):
        if x == 0:
            return self.val
        else:
            return 2


def test_3():
    assert list(Dummy().f([0, 1, 2])) == [1, 2, 2]

test_3()

    test_3()

这篇关于是否可以numpy.vectorize一个实例方法?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-13 13:16