问题描述
在熊猫中,我想创建一个计算列,该列是对另外两个列的布尔运算.
In pandas, I'd like to create a computed column that's a boolean operation on two other columns.
在熊猫中,很容易将两个数字列加在一起.我想对逻辑运算符AND
做类似的事情.这是我的第一次尝试:
In pandas, it's easy to add together two numerical columns. I'd like to do something similar with logical operator AND
. Here's my first try:
In [1]: d = pandas.DataFrame([{'foo':True, 'bar':True}, {'foo':True, 'bar':False}, {'foo':False, 'bar':False}])
In [2]: d
Out[2]:
bar foo
0 True True
1 False True
2 False False
In [3]: d.bar and d.foo ## can't
...
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
因此,我想逻辑运算符的工作方式与熊猫中的数字运算符不太一样.我尝试执行错误消息建议的操作并使用bool()
:
So I guess logical operators don't work quite the same way as numeric operators in pandas. I tried doing what the error message suggests and using bool()
:
In [258]: d.bar.bool() and d.foo.bool() ## spoiler: this doesn't work either
...
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
我找到了一种将布尔列转换为int
并将它们加在一起并作为布尔值求值的方法.
I found a way that works by casting the boolean columns to int
, adding them together and evaluating as a boolean.
In [4]: (d.bar.apply(int) + d.foo.apply(int)) > 0 ## Logical OR
Out[4]:
0 True
1 True
2 False
dtype: bool
In [5]: (d.bar.apply(int) + d.foo.apply(int)) > 1 ## Logical AND
Out[5]:
0 True
1 False
2 False
dtype: bool
这令人费解.有更好的方法吗?
This is convoluted. Is there a better way?
推荐答案
是的,还有更好的方法!只需使用&
元素级逻辑和运算符即可:
Yes there is a better way! Just use the &
element-wise logical and operator:
d.bar & d.foo
0 True
1 False
2 False
dtype: bool
这篇关于在数据框的两列上进行逻辑运算的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!