本文介绍了scipy.interpolate.UnivariateSpline不平滑,无论参数如何的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在获取scipy.interpolate.UnivariateSpline时难以在插值时使用任何平滑处理.基于函数页面以及一些以前的帖子,我相信它应该使用s参数进行平滑处理.

I'm having trouble getting scipy.interpolate.UnivariateSpline to use any smoothing when interpolating. Based on the function's page as well as some previous posts, I believe it should provide smoothing with the s parameter.

这是我的代码:

# Imports
import scipy
import pylab

# Set up and plot actual data
x = [0, 5024.2059124920379, 7933.1645067836089, 7990.4664106277542, 9879.9717114947653, 13738.60563208926, 15113.277958924193]
y = [0.0, 3072.5653360000988, 5477.2689107965398, 5851.6866463790966, 6056.3852496014106, 7895.2332350173638, 9154.2956175610598]
pylab.plot(x, y, "o", label="Actual")

# Plot estimates using splines with a range of degrees
for k in range(1, 4):
    mySpline = scipy.interpolate.UnivariateSpline(x=x, y=y, k=k, s=2)
    xi = range(0, 15100, 20)
    yi = mySpline(xi)
    pylab.plot(xi, yi, label="Predicted k=%d" % k)

# Show the plot
pylab.grid(True)
pylab.xticks(rotation=45)
pylab.legend( loc="lower right" )
pylab.show()

这是结果:

我已经尝试过使用s值范围(0.01、0.1、1、2、5、50)以及显式权重(设置为同一对象(1.0)或随机设置)来进行此操作.我仍然无法进行任何平滑处理,并且结数始终与数据点数相同.特别是,我正在寻找第4个点(7990.4664106277542,5851.6866463790966)的异常值进行平滑处理.

I have tried this with a range of s values (0.01, 0.1, 1, 2, 5, 50), as well as explicit weights, set to either the same thing (1.0) or randomized. I still can't get any smoothing, and the number of knots is always the same as the number of data points. In particular, I'm looking for outliers like that 4th point (7990.4664106277542, 5851.6866463790966) to be smoothed over.

是因为我没有足够的数据吗?如果是这样,是否可以使用类似的样条函数或聚类技术来使用这几个数据点实现平滑?

Is it because I don't have enough data? If so, is there a similar spline function or cluster technique I can apply to achieve smoothing with this few datapoints?

推荐答案

@Zhenya的答案是在数据点之间手动设置打结,这太粗糙了,无法在嘈杂的数据中产生良好的结果,而又不能选择如何应用此技术.但是,受到他/她建议的启发,我在平均值移位聚类.它可以自动确定簇数,并且似乎做得相当不错(实际上非​​常平滑).

@Zhenya's answer of manually setting knots in between datapoints was too rough to deliver good results in noisy data without being selective about how this technique is applied. However, inspired by his/her suggestion, I have had success with Mean-Shift clustering from the scikit-learn package. It performs auto-determination of the cluster count and seems to do a fairly good smoothing job (very smooth in fact).

# Imports
import numpy
import pylab
import scipy
import sklearn.cluster

# Set up original data - note that it's monotonically increasing by X value!
data = {}
data['original'] = {}
data['original']['x'] = [0, 5024.2059124920379, 7933.1645067836089, 7990.4664106277542, 9879.9717114947653, 13738.60563208926, 15113.277958924193]
data['original']['y'] = [0.0, 3072.5653360000988, 5477.2689107965398, 5851.6866463790966, 6056.3852496014106, 7895.2332350173638, 9154.2956175610598]

# Cluster data, sort it and and save
inputNumpy = numpy.array([[data['original']['x'][i], data['original']['y'][i]] for i in range(0, len(data['original']['x']))])
meanShift = sklearn.cluster.MeanShift()
meanShift.fit(inputNumpy)
clusteredData = [[pair[0], pair[1]] for pair in meanShift.cluster_centers_]
clusteredData.sort(lambda pair1, pair2: cmp(pair1[0],pair2[0]))
data['clustered'] = {}
data['clustered']['x'] = [pair[0] for pair in clusteredData]
data['clustered']['y'] = [pair[1] for pair in clusteredData]

# Build a spline using the clustered data and predict
mySpline = scipy.interpolate.UnivariateSpline(x=data['clustered']['x'], y=data['clustered']['y'], k=1)
xi = range(0, round(max(data['original']['x']), -3) + 3000, 20)
yi = mySpline(xi)

# Plot the datapoints
pylab.plot(data['clustered']['x'], data['clustered']['y'], "D", label="Datapoints (%s)" % 'clustered')
pylab.plot(xi, yi, label="Predicted (%s)" %  'clustered')
pylab.plot(data['original']['x'], data['original']['y'], "o", label="Datapoints (%s)" % 'original')

# Show the plot
pylab.grid(True)
pylab.xticks(rotation=45)
pylab.legend( loc="lower right" )
pylab.show()

这篇关于scipy.interpolate.UnivariateSpline不平滑,无论参数如何的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-14 05:33