本文介绍了3NF和BCNF中都存在这种关系吗?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

假设关系模式 R(A,B,C)且FD为

所以超键是 {A },{A,B}

现在,如果我们将其分解为 3NF ,它将是

Now if we decompose it into 3NF it will be

BCNF 中吗?我无法确定。由于 B 不是 R的超键,所以 {B-> R2 中的C} 违反了 BCNF

Is it in BCNF? I can't determine. Since B was not a superkey in R does {B -> C} in R2 violates BCNF?

推荐答案

{AB}是超键,但不是候选键。 (这不是最小的超键。)分解

{AB} is a superkey, but it's not a candidate key. (It's not a minimal superkey.) The decomposition


  • R ( A B)

  • R ( B C)

  • R(A B)
  • R(B C)

至少在 BCNF中。

is in at least BCNF.

非正式地,如果每个箭头都是候选键的 out ,则关系在BCNF中。 B 是R 中的候选键。

Informally, a relation is in BCNF if every arrow is an arrow out of a candidate key. B is a candidate key in R.

在BCNF中,关系R为 not 。 R中唯一的候选键是A; FD B-> C的箭头不是候选键的

The relation R is not in BCNF. The only candidate key in R is A; the FD B->C has an arrow that's not out of a candidate key.

实际上,两个R 和R 比BCNF强得多。他们俩都是6NF。

In truth, both R and R are much stronger than BCNF. They're both in 6NF.

这篇关于3NF和BCNF中都存在这种关系吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-20 08:08