本文介绍了ddply按组分配多个分位数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我该如何进行计算:
library(ddply)
quantile(baseball$ab)
0% 25% 50% 75% 100%
0 25 131 435 705
按组,按团队"说?我想要一个data.frame,其行名为"team",列名为"0%25%50%75%100%",即每组一个quantile
调用.
by groups, say by "team"? I want a data.frame with rownames "team" and column names "0% 25% 50% 75% 100%", i.e. one quantile
call per group.
做
ddply(baseball,"team",quantile(ab))
不是正确的解决方案.我的问题是每个分组操作的输出在这里都是长度为5的向量.
is not the correct solution. my problem is that the OUTPUT of each grouped operation is a vector of length 5 here.
换句话说,对此有什么巧妙的解决方案(不要管标题):
in other words, what's a neat solution to this (nevermind the header):
m=data.frame()
for (i in unique(baseball$team)){m=rbind(m,quantile(baseball[baseball$team==i, ]$ab))}
head(m,3)
X120 X120.1 X120.2 X120.3 X120.4
1 120 120.0 120.0 120.00 120
2 162 162.0 162.0 162.00 162
3 89 89.0 89.0 89.00 89
推荐答案
使用基础R
,您可以使用tapply
和do.call
With base R
you could use tapply
and do.call
library(plyr)
do.call("rbind", tapply(baseball$ab, baseball$team, quantile))
do.call("rbind", tapply(baseball$ab, baseball$team, quantile, c(0.05, 0.1, 0.2)))
或者,使用ddply
ddply(baseball, .(team), function(x) quantile(x$ab))
这篇关于ddply按组分配多个分位数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!