本文介绍了做出Maybe a的约束,其中Eq a的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我如何将Maybe限制为Eq a?它必须是*-> Constraint
How can I constrain to Maybe a where Eq a? It needs to be of kind * -> Constraint
我尝试过的事情:
class (a ~ Maybe b, Eq b) => K a where
instance (a ~ Maybe b, Eq b) => K a where
错误:
Not in scope: type variable ‘b’
示例用法:
data Test c = forall a. (c a) => Test a
r :: Test K -> Maybe Bool
r (Test o) = (==) <$> o <*> o -- I need GHC to infer that o is Maybe Eq
有效的情况:
pp :: Test ((~) String) -> String
pp (Test o) = o ++ "X" -- GHC infers that o is a string
hh :: Test Eq -> Bool
hh (Test o) = o == o -- GHC infers that o is Eq
此处的通用答案:
推荐答案
以下内容在我的计算机上编译.不知道这有多明智.
The following compiles on my machine. No idea how sensible it is.
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ConstraintKinds #-}
class (Eq (UnMaybe a), a ~ Maybe (UnMaybe a)) => EqMaybe a where
type UnMaybe a
instance Eq a => EqMaybe (Maybe a) where
type UnMaybe (Maybe a) = a
data Test c = forall a. c a => Test a
r :: Test EqMaybe -> Maybe Bool
r (Test o) = (==) <$> o <*> o
f :: Test Eq -> Test EqMaybe
f (Test o) = Test (Just o)
这篇关于做出Maybe a的约束,其中Eq a的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!