问题描述
我正在尝试使用 dplyr 将多列中的所有零替换为 NA.但是,由于我有很多变量,我不想一个一个地调用它们,而是将它们存储在一个对象中,以便以后调用.
I am trying to replace all zeros in multiple columns with NA using dplyr.However, since I have many variables, I do not want to call them all by one, but rather store them in an object that I can call afterwards.
这是我所做的一个最小示例:
This is a minimal example of what I did:
library(dplyr)
Data <- data.frame(var1=c(1:10), var2=rep(c(0,4),5), var3 = rep(c(2,0,3,4,5),2), var4 = rep(c(7,0),5))
col <- Data[,c(2:4)]
Data <- Data %>%
mutate(across(col , na_if, 0))
但是,如果我这样做,我会收到以下错误消息:
However, if I do this, I get the following error message:
Error: Problem with 'mutate()' input '..1'.
x Must subset columns with a valid subscript vector.
x Subscript has the wrong type 'data.frame<
var2: double
var3: double
var4: double>'.
i It must be numeric or character.
i Input '..1' is '(function (.cols = everything(), .fns = NULL, ..., .names = NULL) ...'.
我尝试将 col 的格式更改为 tibble,但这没有帮助.
I have tried to change the format of col to a tibble, but that did not help.
谁能告诉我如何进行这项工作?
Could anyone tell me how to make this work?
推荐答案
这里,col
应该是Data的名字.由于 col
有一个函数名,我们可以对对象进行不同的命名,用 all_of
包装并将 中的 0 替换为
NA
跨越
Here, the col
should be names of the Data. As there is a function name with col
, we can name the object differently, wrap with all_of
and replace the 0 to NA
within across
library(dplyr)
col1 <- names(Data)[2:4]
Data <- Data %>%
mutate(across(all_of(col1) , na_if, 0))
-输出
Data
# var1 var2 var3 var4
#1 1 NA 2 7
#2 2 4 NA NA
#3 3 NA 3 7
#4 4 4 4 NA
#5 5 NA 5 7
#6 6 4 2 NA
#7 7 NA NA 7
#8 8 4 3 NA
#9 9 NA 4 7
#10 10 4 5 NA
注意:这里 OP 询问基于索引或列名的循环
NOTE: Here the OP asked about looping based on either the index or the column names
这篇关于如何从 dplyr 中的对象调用列名?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!