本文介绍了突变多个变量以创建多个新变量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

假设我有一个 tibble ,我需要在其中采用多个变量并将其变异为新的多个新变量。

Let's say I have a tibble where I need to take multiple variables and mutate them into new multiple new variables.

例如,下面是一个简单的小标题:

As an example, here is a simple tibble:

tb <- tribble(
  ~x, ~y1, ~y2, ~y3, ~z,
  1,2,4,6,2,
  2,1,2,3,3,
  3,6,4,2,1
)

I想要从名称以 y开头的每个变量中减去变量z,并将结果变异为tb的新变量。另外,假设我不知道我有多少个 y变量。我希望该解决方案很好地适合 tidyverse / dplyr 工作流程。

I want to subtract variable z from every variable with a name starting with "y", and mutate the results as new variables of tb. Also, suppose I don't know how many "y" variables I have. I want the solution to fit nicely within tidyverse / dplyr workflow.

本质上,我不了解如何将多个变量突变为多个新变量。我不确定在这种情况下是否可以使用 mutate ?我已经尝试过 mutate_if ,但是我认为我使用的方式不正确(并且出现错误):

In essence, I don't understand how to mutate multiple variables into multiple new variables. I'm not sure if you can use mutate in this instance? I've tried mutate_if, but I don't think I'm using it right (and I get an error):

tb %>% mutate_if(starts_with("y"), funs(.-z))

#Error: No tidyselect variables were registered

提前谢谢!

推荐答案

由于要对列名进行操作,因此需要使用 mutate_at 而不是 mutate_if 它使用列中的值

Because you are operating on column names, you need to use mutate_at rather than mutate_if which uses the values within columns

tb %>% mutate_at(vars(starts_with("y")), funs(. - z))
#> # A tibble: 3 x 5
#>       x    y1    y2    y3     z
#>   <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1     1     0     2     4     2
#> 2     2    -2    -1     0     3
#> 3     3     5     3     1     1

要创建新列,而不是覆盖现有列,我们可以将名称命名为 funs

To create new columns, instead of overwriting existing ones, we can give name to funs

# add suffix
tb %>% mutate_at(vars(starts_with("y")), funs(mod = . - z))
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z y1_mod y2_mod y3_mod
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1

# remove suffix, add prefix
tb %>%
  mutate_at(vars(starts_with("y")),  funs(mod = . - z)) %>%
  rename_at(vars(ends_with("_mod")), funs(paste("mod", gsub("_mod", "", .), sep = "_")))
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z mod_y1 mod_y2 mod_y3
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1




编辑 :在 dplyr 0.8.0 或更高版本中,不建议使用 funs()(& ),需要改用 list()


Edit: In dplyr 0.8.0 or higher versions, funs() will be deprecated (source1 & source2), need to use list() instead

tb %>% mutate_at(vars(starts_with("y")), list(~ . - z))
#> # A tibble: 3 x 5
#>       x    y1    y2    y3     z
#>   <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1     1     0     2     4     2
#> 2     2    -2    -1     0     3
#> 3     3     5     3     1     1

tb %>% mutate_at(vars(starts_with("y")), list(mod = ~ . - z))
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z y1_mod y2_mod y3_mod
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1

tb %>%
  mutate_at(vars(starts_with("y")),  list(mod = ~ . - z)) %>%
  rename_at(vars(ends_with("_mod")), list(~ paste("mod", gsub("_mod", "", .), sep = "_")))
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z mod_y1 mod_y2 mod_y3
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1




编辑2 :具有函数可进一步简化此任务


Edit 2: dplyr 1.0.0+ has across() function which simplifies this task even further






# Control how the names are created with the `.names` argument which
# takes a [glue](http://glue.tidyverse.org/) spec:
tb %>%
  mutate(
    across(starts_with("y"), ~ .x - z, .names = "mod_{col}")
  )
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z mod_y1 mod_y2 mod_y3
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1

tb %>%
  mutate(
    across(num_range(prefix = "y", range = 1:3), ~ .x - z, .names = "mod_{col}")
  )
#> # A tibble: 3 x 8
#>       x    y1    y2    y3     z mod_y1 mod_y2 mod_y3
#>   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2      0      2      4
#> 2     2     1     2     3     3     -2     -1      0
#> 3     3     6     4     2     1      5      3      1

### Multiple functions
tb %>%
  mutate(
    across(c(matches("x"), contains("z")), ~ max(.x, na.rm = TRUE), .names = "max_{col}"),
    across(c(y1:y3), ~ .x - z, .names = "mod_{col}")
  )
#> # A tibble: 3 x 10
#>       x    y1    y2    y3     z max_x max_z mod_y1 mod_y2 mod_y3
#>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
#> 1     1     2     4     6     2     3     3      0      2      4
#> 2     2     1     2     3     3     3     3     -2     -1      0
#> 3     3     6     4     2     1     3     3      5      3      1

这篇关于突变多个变量以创建多个新变量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-23 00:34
查看更多