本文介绍了需要将#tags拆分为文本的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我需要自动将#tags分割成有意义的单词.
I Need to split #tags to meaningful words in an automated way.
样本输入:
- iloveusa
- mycrushlike
- mydadhero
示例输出
- 我爱美国
- 我喜欢的人
- 我父亲的英雄
我可以使用任何实用程序或开放API来实现这一目标吗?
Any utility or open API that I can use to achieve this?
推荐答案
检查- Norvig 的工作中的20with%20Words.ipynb"rel =" nofollow>分词任务.
Check - Word Segmentation Task from Norvig's work.
from __future__ import division
from collections import Counter
import re, nltk
WORDS = nltk.corpus.brown.words()
COUNTS = Counter(WORDS)
def pdist(counter):
"Make a probability distribution, given evidence from a Counter."
N = sum(counter.values())
return lambda x: counter[x]/N
P = pdist(COUNTS)
def Pwords(words):
"Probability of words, assuming each word is independent of others."
return product(P(w) for w in words)
def product(nums):
"Multiply the numbers together. (Like `sum`, but with multiplication.)"
result = 1
for x in nums:
result *= x
return result
def splits(text, start=0, L=20):
"Return a list of all (first, rest) pairs; start <= len(first) <= L."
return [(text[:i], text[i:])
for i in range(start, min(len(text), L)+1)]
def segment(text):
"Return a list of words that is the most probable segmentation of text."
if not text:
return []
else:
candidates = ([first] + segment(rest)
for (first, rest) in splits(text, 1))
return max(candidates, key=Pwords)
print segment('iloveusa') # ['i', 'love', 'us', 'a']
print segment('mycrushlike') # ['my', 'crush', 'like']
print segment('mydadhero') # ['my', 'dad', 'hero']
要获得比此更好的解决方案,可以使用bigram/trigram.
For better solution than this you can use bigram/trigram.
更多示例,请参见:分词任务
这篇关于需要将#tags拆分为文本的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!