问题描述
我有以下数据框:
df = pd.DataFrame([['A', 1],['B', 2],['C', 3]], columns=['index', 'result'])
索引 | 结果 |
---|---|
A | 1 |
B | 2 |
C | 3 |
我想创建一个新列,例如将结果"列乘以 2,我只是想知道是否有一种方法可以像 pyspark 那样在 Pandas 中做到这一点
I would like to create a new column, for example multiply the column 'result' by two, and I am just curious to know if there is a way to do it in pandas as pyspark does it.
In pyspark:
df = df\
.withColumn("result_multiplied", F.col("result")*2)
我不喜欢每次必须执行操作时都写数据帧的名称,因为它在 Pandas 中完成,例如:
I don't like the fact of writing the name of the dataframe everytime I have to perform an operation as it is done in pandas such as:
In pandas:
df['result_multiplied'] = df['result']*2
推荐答案
使用 DataFrame.assign
:
df = df.assign(result_multiplied = df['result']*2)
或者如果 result
列在代码中处理之前是必要的 lambda 函数来处理 result
列中的计数值:
Or if column result
is processing in code before is necessary lambda function for processing counted values in column result
:
df = df.assign(result_multiplied = lambda x: x['result']*2)
查看差异列的示例result_multiplied
是由多个原始df['result']
计算的,对于result_multiplied1
是在mul(2):
Sample for see difference column result_multiplied
is count by multiple original df['result']
, for result_multiplied1
is used multiplied column after mul(2)
:
df = df.mul(2).assign(result_multiplied = df['result']*2,
result_multiplied1 = lambda x: x['result']*2)
print (df)
index result result_multiplied result_multiplied1
0 AA 2 2 4
1 BB 4 4 8
2 CC 6 6 12
这篇关于以与 pyspark 中类似的方式在 pandas 中分配一个新列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!