本文介绍了如何从旋转/平移/缩放值计算SVG变换矩阵?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有以下详细信息:

<g transform="translate(20, 50) scale(1, 1) rotate(-30 10 25)">

需要将上述行更改为:

<g transform="matrix(?,?,?,?,?,?)">

有人可以帮助我实现这一目标吗?

Can anyone help me to achieve this?

推荐答案

Translate(tx,ty)可以写为矩阵:

Translate(tx, ty) can be written as the matrix:

1  0  tx
0  1  ty
0  0  1

Scale(sx,sy)可以写为矩阵:

Scale(sx, sy) can be written as the matrix:

sx  0  0
0  sy  0
0   0  1

Rotate(a)可以写成矩阵:

Rotate(a) can be written as a matrix:

cos(a)  -sin(a)  0
sin(a)   cos(a)  0
0        0       1

Rotate(a,cx,cy)是(-cx,cy)的平移,度旋转和返回(cx,cy)的平移的组合,得出:

Rotate(a, cx, cy) is the combination of a translation by (-cx, cy), a rotation of a degrees and a translation back to (cx, cy), which gives:

cos(a)  -sin(a)  -cx × cos(a) + cy × sin(a) + cx
sin(a)   cos(a)  -cx × sin(a) - cy × cos(a) + cy
0        0       1

如果仅将其与翻译矩阵相乘,则会得到:

If you just multiply this with the translation matrix you get:

cos(a)  -sin(a)  -cx × cos(a) + cy × sin(a) + cx + tx
sin(a)   cos(a)  -cx × sin(a) - cy × cos(a) + cy + ty
0        0       1

对应于SVG变换矩阵:

Which corresponds to the SVG transform matrix:

(cos(a), sin(a), -sin(a), cos(a), -cx × cos(a) + cy × sin(a) + cx + tx, -cx × sin(a) - cy × cos(a) + cy + ty).

在您的情况下为:matrix(0.866, -0.5 0.5 0.866 8.84 58.35).

如果您包括比例尺(sx,sy)变换,则矩阵为:

If you include the scale (sx, sy) transform, the matrix is:

(sx × cos(a), sy × sin(a), -sx × sin(a), sy × cos(a), (-cx × cos(a) + cy × sin(a) + cx) × sx + tx, (-cx × sin(a) - cy × cos(a) + cy) × sy + ty)

请注意,这是假设您按照编写顺序进行转换.

Note that this assumes you are doing the transformations in the order you wrote them.

这篇关于如何从旋转/平移/缩放值计算SVG变换矩阵?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

06-14 22:34