本文介绍了使用dplyr中的ranging()对月份进行时间排序的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个转换为名称的月份(数字)列表:
I have a list of month (numeric) that I convert to names:
fd <- df %>%
select(product, sales, month) %>%
mutate(month = month.name[month]) %>%
filter(!is.na(product), sales!=0) %>%
group_by(month) %>%
summarise(sales = sum(sales)) %>%
collect()
我想对表格进行排序,以便按时间顺序显示月份.我正在寻找来自 dplyr
的 arrange()
的解决方案.
I would like to sort the table so that months are presented in chronological order. I'm looking for a solution with arrange()
from dplyr
if possible.
这是 fd
的结果:
month sales
1 April 1306629
2 August 1317986
3 December 1263070
4 February 1493914
5 January 1316889
6 July 1323161
7 June 1331614
8 March 1439019
9 May 1369881
10 November 1256950
11 October 1317647
12 September 1229632
推荐答案
这种方法怎么样:
set.seed(12)
df <- data.frame(month = sample(12), x = LETTERS[1:12])
df
# month x
#1 1 A
#2 9 B
#3 10 C
#4 3 D
#5 2 E
#6 12 F
#7 8 G
#8 4 H
#9 7 I
#10 5 J
#11 11 K
#12 6 L
library(dplyr)
df %>%
mutate(month = factor(month.name[month], levels = month.name)) %>%
arrange(month)
# month x
#1 January A
#2 February E
#3 March D
#4 April H
#5 May J
#6 June L
#7 July I
#8 August G
#9 September B
#10 October C
#11 November K
#12 December F
这篇关于使用dplyr中的ranging()对月份进行时间排序的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!