本文介绍了数组列表成本的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我知道,找到被附加到当尺寸加倍可以通过求和找到列表需要n个元素的门店数量Σ从n = 1至日志(2,N )的2 ^ N = 2N-1 。结果
我的问题是如何使用的总和找到,而不是规模增加一倍时,名单不断增加每个它生长时间正好2000元公式?

I know that to find the number of stores needed for n elements to be appended to a list when the size is doubled can be found by the summation ∑ from n=1 to log(2,n) of 2^n = 2n-1.
My question is how I could use a summation to find a formula for when instead of doubling in size the list grows by exactly 2000 elements each time it grows?

推荐答案

所以,如果到2000元,那么阵列增加正大小的数组将增加地板(N / 2000)倍。如我们可以看到,它最近2000元素移动至多一次,下一个2000的槽(从端)移动两次,下一个2000的槽(从端)移动三次,依此类推。因此,我们有以下公式:

So, if array increases by 2000 elements, then n-sized array will increase floor(n/2000) times. As we may notice, last 2000 elements of it move at most once, next 2000-slot (from the end) moves twice, next 2000-slot (from the end) moves three times, and so on. So we have this formula:

∑ i = 1 to floor(n/2000)[ i * 2000 ] = 

2000 * (∑ i = 1 to floor(n/2000) [ i ]) =

2000 * (1 + 2 + 3 + .. + floor(n/2000)) =

2000 * (floor(n/2000)*(1 + floor(n/2000))/2)

这篇关于数组列表成本的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-27 10:04