问题描述
我正在尝试在 Visual Studio 2019 上使用 CUDA 10.2 和 cuDNN v7.6.5 在 Windows 10 上使用 NVidia GeForce 930M 运行 YOLOv3.这是我使用的部分代码.
I am trying to run YOLOv3 on Visual Studio 2019 using CUDA 10.2 with cuDNN v7.6.5 on Windows 10 using NVidia GeForce 930M. Here is part of the code I used.
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
int main()
{
// Load names of classes
string classesFile = "coco.names";
ifstream ifs(classesFile.c_str());
string line;
while (getline(ifs, line)) classes.push_back(line);
// Give the configuration and weight files for the model
String modelConfiguration = "yolovs.cfg";
String modelWeights = "yolov3.weights";
// Load the network
Net net = readNetFromDarknet(modelConfiguration, modelWeights);
net.setPreferableBackend(DNN_BACKEND_CUDA);
net.setPreferableTarget(DNN_TARGET_CUDA);
// Open the video file
inputFile = "vid.mp4";
cap.open(inputFile);
// Get frame from the video
cap >> frame;
// Create a 4D blob from a frame
blobFromImage(frame, blob, 1 / 255.0, Size(inpWidth, inpHeight), Scalar(0, 0, 0), true, false);
// Sets the input to the network
net.setInput(blob);
// Runs the forward pass to get output of the output layers
vector<Mat> outs;
net.forward(outs, getOutputsNames(net));
}
虽然我在 C/C++ 中将 $(CUDNN)\include;$(cudnn)\include; 添加到 附加包含目录和链接器,在C/C++>预处理器定义中添加了CUDNN_HALF;CUDNN;,并添加了cudnn.lib;到链接器>输入,我仍然收到此警告:
Although I add $(CUDNN)\include;$(cudnn)\include; to Additional Include Directories in both C/C++ and Linker, added CUDNN_HALF;CUDNN; to C/C++>Preprocessor Definitions, and added cudnn.lib; to Linker>Input, I still get this warning:
DNN 模块不是用 CUDA 后端构建的;切换到 CPU
它在 CPU 而不是 GPU 上运行,有人能帮我解决这个问题吗?
and it runs on CPU instead of GPU, can anyone help me with this problem?
推荐答案
我使用 CMake 解决了这个问题,但我必须先添加这个 opencv_contrib 然后使用 Visual Studio 重建它.确保选中这些WITH_CUDA、WITH_CUBLAS、WITH_CUDNN、OPENCV_DNN_CUDA、BUILD_opencv_world在 CMake 中.
I solved it by using CMake, but I had first to add this opencv_contrib then rebuilding it using Visual Studio. Make sure that these WITH_CUDA, WITH_CUBLAS, WITH_CUDNN, OPENCV_DNN_CUDA, BUILD_opencv_world are checked in CMake.
这篇关于如何处理“DNN模块不是用CUDA后端构建的;切换到 CPU"C++中的警告?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!