本文介绍了筑巢(爆炸) pandas 系列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有:
df = pd.DataFrame({'col1': ['asdf', 'xy', 'q'], 'col2': [1, 2, 3]})
col1 col2
0 asdf 1
1 xy 2
2 q 3
我想从col1
中的字符串中获取每个字母的组合乘积",而每个col2
中的元素逐个int.即:
I'd like to take the "combinatoric product" of each letter from the strings in col1
, with each elementwise int in col2
. I.e.:
col1 col2
0 a 1
1 s 1
2 d 1
3 f 1
4 x 2
5 y 2
6 q 3
当前方法:
from itertools import product
pieces = []
for _, s in df.iterrows():
letters = list(s.col1)
prods = list(product(letters, [s.col2]))
pieces.append(pd.DataFrame(prods))
pd.concat(pieces)
有没有更有效的解决方法?
Any more efficient workarounds?
推荐答案
使用list
+ str.join
和np.repeat
-
pd.DataFrame(
{
'col1' : list(''.join(df.col1)),
'col2' : df.col2.values.repeat(df.col1.str.len(), axis=0)
})
col1 col2
0 a 1
1 s 1
2 d 1
3 f 1
4 x 2
5 y 2
6 q 3
对于任意数量的列的通用解决方案很容易实现,而无需对该解决方案进行太多更改-
A generalised solution for any number of columns is easily achievable, without much change to the solution -
i = list(''.join(df.col1))
j = df.drop('col1', 1).values.repeat(df.col1.str.len(), axis=0)
df = pd.DataFrame(j, columns=df.columns.difference(['col1']))
df.insert(0, 'col1', i)
df
col1 col2
0 a 1
1 s 1
2 d 1
3 f 1
4 x 2
5 y 2
6 q 3
性能
df = pd.concat([df] * 100000, ignore_index=True)
# MaxU's solution
%%timeit
df.col1.str.extractall(r'(.)') \
.reset_index(level=1, drop=True) \
.join(df['col2']) \
.reset_index(drop=True)
1 loop, best of 3: 1.98 s per loop
# piRSquared's solution
%%timeit
pd.DataFrame(
[[x] + b for a, *b in df.values for x in a],
columns=df.columns
)
1 loop, best of 3: 1.68 s per loop
# Wen's solution
%%timeit
v = df.col1.apply(list)
pd.DataFrame({'col1':np.concatenate(v.values),'col2':df.col2.repeat(v.apply(len))})
1 loop, best of 3: 835 ms per loop
# Alexander's solution
%%timeit
pd.DataFrame([(letter, i)
for letters, i in zip(df['col1'], df['col2'])
for letter in letters],
columns=df.columns)
1 loop, best of 3: 316 ms per loop
%%timeit
pd.DataFrame(
{
'col1' : list(''.join(df.col1)),
'col2' : df.col2.values.repeat(df.col1.str.len(), axis=0)
})
10 loops, best of 3: 124 ms per loop
我尝试对Vaishali进行计时,但是在此数据集上花费的时间太长.
I tried timing Vaishali's, but it took too long on this dataset.
这篇关于筑巢(爆炸) pandas 系列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!