本文介绍了与`None`的比较将导致元素对象的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

显然(在未来"中)将不再使用以下内容:

Apparantly it will (in the 'future') not be possible anymore to use the following:

import numpy as np
np.array([0,1,2]) == None
> False
> FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.

这也打破了numpy数组的延迟加载模式:

This also breaks the lazy loading pattern for numpy arrays:

import numpy as np
def f(a=None):
    if a == None: 
        a = <some default value>
    <function body>

还有什么其他可能性可以让您仍然使用延迟初始化?

What other possibilities allow you to still use lazy initialization?

推荐答案

您在寻找is:

if a is None:
    a = something else

问题在于,通过使用==运算符,如果输入元素a是一个numpy数组,则numpy将尝试对元素进行明智的比较,并告知您无法对其进行比较.

The problem is that, by using the == operator, if the input element a is a numpy array, numpy will try to perform an element wise comparison and tell you that you cannot compare it.

对于a一个numpy数组,a == None给出错误,而np.all(a == None)不给出错误(但不执行您期望的操作).取而代之的是a is None将起作用,而与a的数据类型无关.

For a a numpy array, a == None gives error, np.all(a == None) doesn't (but does not do what you expect). Instead a is None will work regardless the data type of a.

这篇关于与`None`的比较将导致元素对象的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-22 16:37