问题描述
我在一个带有一个变量的网格上有一个大约100个时间步长的netcdf文件,该文件在时间步长上累积.我现在有兴趣计算每个时间步长对变量值的贡献(即连续时间步长之差).
I have a netcdf-file with about 100 timesteps on a grid with one variable, which is accumulated over the timesteps. I am now interested in calculating the contribution of each timestep to the variable's value (i.e. the difference of consecutive timesteps).
目前,我使用以下顺序:
Currently I use the following sequence:
- 要将每个时间步提取到一个新文件中,我使用
cdo seltimestep,$i ...
, - 使用
cdo sub $i ${i-1} ...
将每个差异计算到一个新文件中 - ,最后将这些新文件与
cdo mergetime ...
合并为一个结果文件.
- To extract every single timestep into a new file I use
cdo seltimestep,$i ...
, - calculate each difference into a new file with
cdo sub $i ${i-1} ...
- and merge those new files in the end with
cdo mergetime ...
into one single result file.
在我看来,这很麻烦,而且对性能而言并不理想.由于时间步长很大,因此我无法使用cdo管道,因此需要同时创建许多文件.
That seems to me to be very cumbersome and not ideal regarding to performance. Because of the amount of timesteps I cannot use a cdo pipeline and need to create many files in the meantime therefore.
是否有更好的解决方案,可以使用cdo(或其他类似nco/ncl的东西)将累加变量转换为时间步长值?
Is there one better solution to convert an accumulated variable to timestep values with cdo (or something else like nco/ncl?)
推荐答案
numpy的差异计算连续条目的差.
我怀疑您的文件中包含一个多维变量,因此这是一个通用示例:
I suspect you have a multi-dimension variable in your file, so here is a generic example of how to do it:
import netCDF4
import numpy as np
ncfile = netCDF4.Dataset('./myfile.nc', 'r')
var = ncfile.variables['variable'][:,:,:] # [time x lat x lon]
# Differences with a step of 1 along the 'time' axis (0)
var_diff = np.diff(var, n=1, axis=0)
ncfile.close()
# Write out the new variable to a new file
ntim, nlat, nlon = np.shape(var_diff)
ncfile_out = netCDF4.Dataset('./outfile.nc', 'w')
ncfile_out.createDimension('time', ntim)
ncfile_out.createDimension('lat', nlat)
ncfile_out.createDimension('lon', nlon)
var_out = ncfile_out.createVariable('variable', 'f4', ('time', 'lat', 'lon',))
var_out[:,:,:] = var_diff[:,:,:]
ncfile_out.close()
这篇关于使用CDO将netcdf文件中的累积变量转换为时间步长值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!