本文介绍了如何组织大型闪亮的应用程序?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
组织大型闪亮应用程序的最佳实践是什么?
我认为最佳的R实践也适用于SHINY。
此处讨论最佳R实践:How to organize large R programs
指向Google R样式指南的链接:Style Guide
- 在SHINY中开发面向对象编程
- 在
server.R
中应采购哪些部件? - 项目的文件层次结构,包含标记文档、图片XML和源文件
例如,如果我在每个tabPanel
中使用navbarPage
和tabsetPanel
,则在添加了几个UI元素后,我的代码开始看起来相当混乱。
示例代码:
server <- function(input, output) {
#Here functions and outputs..
}
ui <- shinyUI(navbarPage("My Application",
tabPanel("Component 1",
sidebarLayout(
sidebarPanel(
# UI elements..
),
mainPanel(
tabsetPanel(
tabPanel("Plot", plotOutput("plot")
# More UI elements..
),
tabPanel("Summary", verbatimTextOutput("summary")
# And some more...
),
tabPanel("Table", tableOutput("table")
# And...
)
)
)
)
),
tabPanel("Component 2"),
tabPanel("Component 3")
))
shinyApp(ui = ui, server = server)
对于组织ui.R
代码,我从GitHub找到了相当不错的解决方案:radiant code
解决方案是使用renderUI
呈现每tabPanel
一次,在server.R
中,选项卡来自不同的文件。
server <- function(input, output) {
# This part can be in different source file for example component1.R
###################################
output$component1 <- renderUI({
sidebarLayout(
sidebarPanel(
),
mainPanel(
tabsetPanel(
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))
)
)
)
})
#####################################
}
ui <- shinyUI(navbarPage("My Application",
tabPanel("Component 1", uiOutput("component1")),
tabPanel("Component 2"),
tabPanel("Component 3")
))
shinyApp(ui = ui, server = server)
推荐答案
将模块添加到R SHINY之后。在闪亮的应用程序中管理复杂结构已变得容易得多。
闪亮模块详细说明:Here
在基于选项卡的闪亮应用中,一个选项卡可视为一个模块,具有输入和输出。然后,选项卡的输出可以作为输入传递到其他选项卡。
采用模块化思想的基于选项卡的结构的单文件应用程序。APP可以使用cars数据集进行测试。部分代码是从Joe Cheng(第一个链接)复制而来的。欢迎所有意见。
# Tab module
# This module creates new tab which renders dataTable
dataTabUI <- function(id, input, output) {
# Create a namespace function using the provided id
ns <- NS(id)
tagList(sidebarLayout(sidebarPanel(input),
mainPanel(dataTableOutput(output))))
}
# Tab module
# This module creates new tab which renders plot
plotTabUI <- function(id, input, output) {
# Create a namespace function using the provided id
ns <- NS(id)
tagList(sidebarLayout(sidebarPanel(input),
mainPanel(plotOutput(output))))
}
dataTab <- function(input, output, session) {
# do nothing...
# Should there be some logic?
}
# File input module
# This module takes as input csv file and outputs dataframe
# Module UI function
csvFileInput <- function(id, label = "CSV file") {
# Create a namespace function using the provided id
ns <- NS(id)
tagList(
fileInput(ns("file"), label),
checkboxInput(ns("heading"), "Has heading"),
selectInput(
ns("quote"),
"Quote",
c(
"None" = "",
"Double quote" = """,
"Single quote" = "'"
)
)
)
}
# Module server function
csvFile <- function(input, output, session, stringsAsFactors) {
# The selected file, if any
userFile <- reactive({
# If no file is selected, don't do anything
validate(need(input$file, message = FALSE))
input$file
})
# The user's data, parsed into a data frame
dataframe <- reactive({
read.csv(
userFile()$datapath,
header = input$heading,
quote = input$quote,
stringsAsFactors = stringsAsFactors
)
})
# We can run observers in here if we want to
observe({
msg <- sprintf("File %s was uploaded", userFile()$name)
cat(msg, "
")
})
# Return the reactive that yields the data frame
return(dataframe)
}
basicPlotUI <- function(id) {
ns <- NS(id)
uiOutput(ns("controls"))
}
# Functionality for dataselection for plot
# SelectInput is rendered dynamically based on data
basicPlot <- function(input, output, session, data) {
output$controls <- renderUI({
ns <- session$ns
selectInput(ns("col"), "Columns", names(data), multiple = TRUE)
})
return(reactive({
validate(need(input$col, FALSE))
data[, input$col]
}))
}
##################################################################################
# Here starts main program. Lines above can be sourced: source("path-to-module.R")
##################################################################################
library(shiny)
ui <- shinyUI(navbarPage(
"My Application",
tabPanel("File upload", dataTabUI(
"tab1",
csvFileInput("datafile", "User data (.csv format)"),
"table"
)),
tabPanel("Plot", plotTabUI(
"tab2", basicPlotUI("plot1"), "plotOutput"
))
))
server <- function(input, output, session) {
datafile <- callModule(csvFile, "datafile",
stringsAsFactors = FALSE)
output$table <- renderDataTable({
datafile()
})
plotData <- callModule(basicPlot, "plot1", datafile())
output$plotOutput <- renderPlot({
plot(plotData())
})
}
shinyApp(ui, server)
这篇关于如何组织大型闪亮的应用程序?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!