本文介绍了无法使用非线性拟合方法(nlsLM,nlxb和wrapnls)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 我有一个 nls 适合任务,我想用R. 我的第一次尝试要做到这一点 here ,而@Roland指出 关键是复杂的模型难以适应,数据越少,支持模型就越不可能,您可能会适应这个,如果你有非常好的起始值。 我可以同意@Roland,但如果 excel 可以做到这一点,为什么不 R 不能做? 可以使用Excel的GRG非线性求解器完成,但是该过程非常耗时,有时适合不太好。 (因为现在有很多数据)。 这是我的示例data.frame。我想将每个集合组合与下面提供的模型相匹配, set.seed(12345) set = rep(rep(c(1,2,3,4),each = 21),times = 1) time = rep(c(10,seq(100,900,100),seq(1000,10000,1000),20000),times = 1) value< - replicate(1,c(replicate(4,sort ^ runif(21,-6,-3),decrease = FALSE))) data_rep >头(data_rep)#时间值集#1 10 1.007882e-06 1 #2 100 1.269423e-06 1 #3 200 2.864973e-06 1 #4 300 3.155843e-06 1 #5 400 3.442633e-06 1 #6 500 9.446831e-06 1 * * * * 尝试1 我已经在这里发布了一个问题trouble-when-adding-3rd-fitting-parameter-in-nls 基本上问题是我想在分组数据中进行拟合,并根据拟合系数进行预测。 我使用 nlsLM 从库(minpack.lm)我收到错误 nlsModel(formula,mf,start,wts,upper)中的错误:初始时的单数梯度矩阵参数估计 这是乍一看可能模型错误或我的起始值不符合@Roland。另一方面,我可以使用这个模型只有两个拟合参数。当我想将第三个参数添加到拟合函数时,会出现问题。 尝试2 在该帖子中麻烦-adding-3-fitting-parameter-in-nls 通过跟随@G。 Grothendieck建议,我尝试从 nlmrt 包中修改 nlxb 并修复了一个参数 d 到 d = 32 并按以下方法进行拟合: formula = value〜Ps *(1-exp(-2 * f * time * exp(-d)))* 1 /(sqrt(2 * pi * sigma))* exp( - (d-d_ave) ^ 2 /(2 * sigma))* d_step d_step< - 1 f< - 1e9 d 库(plyr)库(nlmrt) get.coefs< - function(data_rep){ fit< - nlxb(formula, data = data_rep, start = c(d_ave = 44,sigma = 12,Ps = 0.5), lower = c(d_ave = 25,sigma = 2,Ps = 0.5), upper = c(d_ave = 60,sigma = 15,Ps = 1), trace = TRUE)} fit< - dlply(data_rep,c(set),.fun = get.coefs)按set分组 #>适合#$`1` #nlmrt类对象:x #剩余sumsquares = 1.474e-07在21个观察#之后12个雅可比和13个函数评估#name coeff SE tstat pval #gradient JSingval #d_ave 42.0126 NA NA NA#-7.082e-15 0.001733 #sigma 12.8377 NA NA NA#2.408e-15 1.289e-19 #Ps 0.973223 NA NA NA#9.33e-15 3.37e-20 ##$`2` #nlmrt类对象:x #剩余sumsquares = 6.2664e- 08 21点观察#12个雅可比和13个函数评估#名称系数SE tstat pval #gradient JSingval #d_ave 42.246 NA NA NA#-7.269e-15 0.001428 #sigma 12.7429 NA NA NA#2.568e-15 3.098e-19 #Ps 0.981517 NA NA NA#9.211e-15 2.746e-20 ##$`3` # nlmrt类对象:x #剩余sumsquares = 1.773e-07在21个观察#12个雅可比和13个函数评估#名称coeff SE tstat pval #gradient JSingval # d_ave 41.968 NA NA NA#-6.438e-15 0.001798 #sigma 12.8561 NA NA NA#2.173e-15 2.414e-19 #Ps 0.972988 NA NA NA#8.534e-15 5.922e-20 #$`4` #nlmrt类对象:x #剩余sumsquares = 2.5219e-07在21个观察#12次雅可比和13次功能评估#name coeff SE tstat pval #gradient JSingval #d_ave 41.8532 NA NA NA#-4.454e-15 0.001976 #sigma 12.9045 NA NA NA#1.474e-15 3.443e-19 #Ps 0.974319 NA NA NA#5.987e -15 3.124e-20 #attr(,split_type)#[1]data.frame#attr(,split_labels)#set #1 1 #2 2 #3 3 #4 4 拟合系数是合理的wolaa!但是这一次,我意识到(@G。Grothendieck也稍后指出),在 nlxb (why =?我不知道!)之后,不可能预测新的值/ p> predvals< - ldply(fit,.fun = predictvals,xvar =time,yvar =value,xrange =范围(范围))#预测值 ::您可以找到 / code>函数从 here UseMethod(predict)中的错误:不适用于预测应用于类nlmrt的对象的适用方法 没有! coef 或预测方法为nlmrt类对象。 尝试3 追踪@G后。 Grothendieck另一个建议接下来我试过 wrapnls 从 nlmrt 。 因为在这篇文章中他说: can-we-make-prediction-with-nlxb-from-nlmrt-package 因为nlmrt包提供 wrapnls ,它将运行 nlmrt 然后 nls ,以便一个nls对象结果,然后该对象可以与所有的nls类方法一起使用。 em> 从同样的 nlmrt 包中仍然有麻烦,如下所示 在我的第一个 plyr -3rd-fitting-parameter-in-nls> post ,因为加载 plyr 和 dplyr 正在制作我的问题更复杂,所以我会坚持使用 dplyr a d使用 do 函数。 library(dplyr)库(nlmrt) formula = value〜Ps *(1-exp(-2 * f * time * exp(-d)))* 1 /(sqrt(2 * pi * sigma))* exp - (d-d_ave)^ 2 /(2 * sigma))* d_step d_step f d dffit = data_rep%>%group_by(set)%>% do(fit = wrapnls(formula, data =。, start = c(d_ave = 44 ,σ= 12,Ps = 0.5), lower = c(d_ave = 25,sigma = 2,Ps = 0.5), upper = c(d_ave = 60,sigma = 15,Ps = 1 ), trace = TRUE)) nlsModel中的错误(公式,mf,start,wts,upper):初始参数估计的单数梯度矩阵 我回到在那里我开始出现这个错误。 我想我尝试了一切我可以做的,寻找相关的例子(虽然只有3),看书并遵循建议。 解决方案在 nls2 > nlxb 这样(假设 data_rep , 公式, d_step , f 和 d 。为了使示例最小化,我们已经消除了dplyr,并且仅显示set == 2的计算。 library(nlmrt) 库(nls2) data_rep2< - 子集(data_rep,set == 2) fit.nlxb< - nlxb(formula,data = data_rep2 , start = c(d_ave = 44,sigma = 12,Ps = 0.5), lower = c(d_ave = 25,sigma = 2,Ps = 0.5), upper = c (d_ave = 60,sigma = 15,Ps = 1)) fit.nls 算法= brute-force) 相同(fit.nlxb $系数,coef(fit.nls)) ## [1] TRUE fit.nls 是一个nls类对象具有与 fit.nlxb 相同的系数,我们可以使用 fit()和 predict()和所有其他nls方法。 I have a nls fitting task that I wanted to do with R.My first attempt to do this here and as @Roland pointed out"The point is that complex models are difficult to fit. The more so, the less the data supports the model until it become impossible. You might be able to fit this, if you had extremely good starting values."I can agree with @Roland but if excel can do this fitting why not R cannot do?Basically this fitting can be done with Excel's GRG Nonlinear solver but the process is very time consuming and sometimes fitting is not good. (since there are a lots of data in reality).here is my sample data.frame. I would like to fit each set group with the model provided at below,set.seed(12345) set =rep(rep(c("1","2","3","4"),each=21),times=1) time=rep(c(10,seq(100,900,100),seq(1000,10000,1000),20000),times=1) value <- replicate(1,c(replicate(4,sort(10^runif(21,-6,-3),decreasing=FALSE)))) data_rep <- data.frame(time, value,set) > head(data_rep) # time value set #1 10 1.007882e-06 1 #2 100 1.269423e-06 1 #3 200 2.864973e-06 1 #4 300 3.155843e-06 1 #5 400 3.442633e-06 1 #6 500 9.446831e-06 1 * * * *attempt 1I already posted a question to here trouble-when-adding-3rd-fitting-parameter-in-nlsBasically the problem is that I wanted to do fitting in grouped data and doing prediction based on the fitting coefficients.I used nlsLM from library(minpack.lm) I got an error Error in nlsModel(formula, mf, start, wts, upper) : singular gradient matrix at initial parameter estimateswhich was at first glance maybe the model error or my starting values were not good in accordance to @Roland. On the other hand, I could fit this model with only two fitting parameters. The problem arises when I wanted to add third parameter to the fitting function.attempt 2In that post trouble-when-adding-3rd-fitting-parameter-in-nls by following @G. Grothendieck suggestion, I tried nlxb from nlmrt package and fixed one of the parameter d to d=32 and do the fitting as follows;formula = value~Ps*(1-exp(-2*f*time*exp(-d)))*1/(sqrt(2*pi*sigma))*exp(-(d-d_ave)^2/(2*sigma))*d_stepd_step <- 1f <- 1e9d <- 32library(plyr)library(nlmrt)get.coefs <- function(data_rep) {fit <- nlxb(formula , data = data_rep, start=c(d_ave=44,sigma=12,Ps=0.5), lower=c(d_ave=25,sigma=2,Ps=0.5), upper=c(d_ave=60,sigma=15,Ps=1), trace=TRUE)}fit <- dlply(data_rep, c("set"), .fun = get.coefs) # Fit data grouped by "set"# > fit# $`1`# nlmrt class object: x# residual sumsquares = 1.474e-07 on 21 observations# after 12 Jacobian and 13 function evaluations# name coeff SE tstat pval #gradient JSingval# d_ave 42.0126 NA NA NA #-7.082e-15 0.001733# sigma 12.8377 NA NA NA #2.408e-15 1.289e-19# Ps 0.973223 NA NA NA #9.33e-15 3.37e-20## $`2`# nlmrt class object: x# residual sumsquares = 6.2664e-08 on 21 observations# after 12 Jacobian and 13 function evaluations# name coeff SE tstat pval #gradient JSingval# d_ave 42.246 NA NA NA #-7.269e-15 0.001428# sigma 12.7429 NA NA NA #2.568e-15 3.098e-19# Ps 0.981517 NA NA NA #9.211e-15 2.746e-20## $`3`# nlmrt class object: x# residual sumsquares = 1.773e-07 on 21 observations# after 12 Jacobian and 13 function evaluations# name coeff SE tstat pval #gradient JSingval# d_ave 41.968 NA NA NA #-6.438e-15 0.001798# sigma 12.8561 NA NA NA #2.173e-15 2.414e-19# Ps 0.972988 NA NA NA #8.534e-15 5.922e-20# $`4`# nlmrt class object: x# residual sumsquares = 2.5219e-07 on 21 observations# after 12 Jacobian and 13 function evaluations# name coeff SE tstat pval #gradient JSingval# d_ave 41.8532 NA NA NA #-4.454e-15 0.001976# sigma 12.9045 NA NA NA #1.474e-15 3.443e-19# Ps 0.974319 NA NA NA #5.987e-15 3.124e-20# attr(,"split_type")# [1] "data.frame"# attr(,"split_labels")# set# 1 1# 2 2# 3 3# 4 4fitting coefficients are reasonable wolaa! But this time I realized that (@G. Grothendieck also pointed out later) it is impossible to predict new values after nlxb (why=? I don't know!)predvals <- ldply(fit, .fun=predictvals, xvar="time", yvar="value",xrange=range(range)) # predict values::you can find predictvals function from here Error in UseMethod("predict") : no applicable method for 'predict' applied to an object of class "nlmrt"There are NO! coef or predict methods for "nlmrt" class objects.attempt 3After following @G. Grothendieck another suggestionnext I tried wrapnls from nlmrt.because in this post he stated,can-we-make-prediction-with-nlxb-from-nlmrt-package"because nlmrt package does provide wrapnls which will run nlmrt and then nls so that an "nls" object results and then that object can be used with all the "nls" class methods.From the same nlmrt package still having trouble like at belowI give up to use plyr after my first post because loading plyr and dplyr is making my problem more complex. So I will stick with dplyr and use do function instead.library(dplyr)library(nlmrt)formula = value~Ps*(1-exp(-2*f*time*exp(-d)))*1/(sqrt(2*pi*sigma))*exp(-(d-d_ave)^2/(2*sigma))*d_stepd_step <- 1f <- 1e9d <- 32dffit = data_rep %>% group_by(set) %>% do(fit = wrapnls(formula , data = ., start=c(d_ave=44,sigma=12,Ps=0.5), lower=c(d_ave=25,sigma=2,Ps=0.5), upper=c(d_ave=60,sigma=15,Ps=1), trace=TRUE)) Error in nlsModel(formula, mf, start, wts, upper) : singular gradient matrix at initial parameter estimatesI returned back to where I started with this error.I guess I tried everything I can do, looking for relevant examples (though only 3 ), read book and following the suggestions. 解决方案 Use nls2 from the nls2 package after nlxb like this (assuming data_rep,formula, d_step, f and d from the question). In order to make the example minimal we have eliminated dplyr and just show the computation for set == 2.library(nlmrt)library(nls2)data_rep2 <- subset(data_rep, set == 2)fit.nlxb <- nlxb(formula , data = data_rep2, start = c(d_ave = 44, sigma = 12, Ps = 0.5), lower = c(d_ave = 25, sigma = 2, Ps = 0.5), upper = c(d_ave = 60, sigma = 15, Ps = 1))fit.nls <- nls2(formula, data = data_rep2, start = fit.nlxb$coefficients, algorithm = "brute-force")identical(fit.nlxb$coefficients, coef(fit.nls))## [1] TRUEfit.nls is an "nls" class object with the same coefficients as fit.nlxb and we can use fitted() and predict() and all the other "nls" methods on it. 这篇关于无法使用非线性拟合方法(nlsLM,nlxb和wrapnls)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!
09-15 04:00
查看更多