本文介绍了使用BallTree查找距离每个商店最近的站点的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个数据集,一个带有英国坐标的商店列表和一个带有坐标的火车站。
我正在使用BallTree来获得距离每个商店最近的站点,使用来自该网站的代码,并且我已经适当地交换了我的数据帧。
https://automating-gis-processes.github.io/site/notebooks/L3/nearest-neighbor-faster.html
编码:
import pandas as pd
import numpy as np
import geopandas as gpd
from sklearn.neighbors import BallTree
df_pocs = pd.read_csv(r'C:UsersFLETCHWIDesktopXXshops.csv', encoding = "ISO-8859-1", engine='python')
df_stations = pd.read_csv(r'C:UsersFLETCHWIDesktopxxuk_stations.csv', encoding = "ISO-8859-1", engine='python')
gdf_pocs = gpd.GeoDataFrame(
df_pocs, geometry=gpd.points_from_xy(df_pocs.longitude, df_pocs.latitude))
gdf_stations = gpd.GeoDataFrame(
df_stations, geometry=gpd.points_from_xy(df_stations.longitude, df_stations.latitude))
def get_nearest(src_points, candidates, k_neighbors=1):
"""Find nearest neighbors for all source points from a set of candidate points"""
# Create tree from the candidate points
tree = BallTree(candidates, leaf_size=15, metric='haversine')
# Find closest points and distances
distances, indices = tree.query(src_points, k=k_neighbors)
# Transpose to get distances and indices into arrays
distances = distances.transpose()
indices = indices.transpose()
# Get closest indices and distances (i.e. array at index 0)
# note: for the second closest points, you would take index 1, etc.
closest = indices[0]
closest_dist = distances[0]
# Return indices and distances
return (closest, closest_dist)
def nearest_neighbor(left_gdf, right_gdf, return_dist=False):
"""
For each point in left_gdf, find closest point in right GeoDataFrame and return them.
NOTICE: Assumes that the input Points are in WGS84 projection (lat/lon).
"""
left_geom_col = left_gdf.geometry.name
right_geom_col = right_gdf.geometry.name
# Ensure that index in right gdf is formed of sequential numbers
right = right_gdf.copy().reset_index(drop=True)
# Parse coordinates from points and insert them into a numpy array as RADIANS
left_radians = np.array(left_gdf[left_geom_col].apply(lambda geom: (geom.x * np.pi / 180, geom.y * np.pi / 180)).to_list())
right_radians = np.array(right[right_geom_col].apply(lambda geom: (geom.x * np.pi / 180, geom.y * np.pi / 180)).to_list())
# Find the nearest points
# -----------------------
# closest ==> index in right_gdf that corresponds to the closest point
# dist ==> distance between the nearest neighbors (in meters)
closest, dist = get_nearest(src_points=left_radians, candidates=right_radians)
# Return points from right GeoDataFrame that are closest to points in left GeoDataFrame
closest_points = right.loc[closest]
# Ensure that the index corresponds the one in left_gdf
closest_points = closest_points.reset_index(drop=True)
# Add distance if requested
if return_dist:
# Convert to meters from radians
earth_radius = 6371000 # meters
closest_points['distance'] = dist * earth_radius
return closest_points
# Find closest public transport stop for each building and get also the distance based on haversine distance
# Note: haversine distance which is implemented here is a bit slower than using e.g. 'euclidean' metric
# but useful as we get the distance between points in meters
closest_stations = nearest_neighbor(gdf_pocs, gdf_stations, return_dist=True)
运行代码后,它为我拥有的每个商店返回相同的站点。不过,我希望它能为每家商店找到最近的站点和距离。
如有任何帮助,谢谢!
推荐答案
我对函数进行了一些测试,确实需要颠倒经度/经度才能工作。
注意警告:
NOTICE: Assumes that the input Points are in WGS84 projection (lat/lon).
因此,在定义点时,简单更改
gdf_pocs = gpd.GeoDataFrame(
df_pocs, geometry=gpd.points_from_xy(df_pocs.longitude, df_pocs.latitude))
gdf_stations = gpd.GeoDataFrame(
df_stations, geometry=gpd.points_from_xy(df_stations.longitude, df_stations.latitude))
至
gdf_pocs = gpd.GeoDataFrame(
df_pocs, geometry=gpd.points_from_xy(df_pocs.latitude, df_pocs.longitude))
gdf_stations = gpd.GeoDataFrame(
df_stations, geometry=gpd.points_from_xy(df_stations.latitude, df_stations.longitude))
这篇关于使用BallTree查找距离每个商店最近的站点的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!