本文介绍了我如何优化我的递归Lisp函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试创建一个函数prime-factors,该函数返回数字的素数.为此,我创建了is-prime函数,并创建了prime-factors-helper函数,将对主要因子进行递归检查.

I am trying to create a function prime-factors that returns the prime factors of a number. To do so, I created is-prime function, and prime-factors-helper that will do a recursive check of the prime factors.

(defun is-prime (n &optional (d (- n 1))) 
  (if (/= n 1) (or (= d 1)
          (and (/= (rem n d) 0)
               (is-prime  n (- d 1)))) ()))

(defun prime-factors-helper (x n)
   (if (is-prime x) 
       (list x) 
       (if (is-prime n) 
            (if (AND (= (mod x n) 0) (<= n (/ x 2)))
                (cons n (prime-factors-helper (/ x n) n))
                (prime-factors-helper x (+ 1 n)))       
            (prime-factors-helper x (+ 1 n)))))

(defun prime-factors (x)
    (prime-factors-helper x 2)) 

问题

我有一个乐观的问题.当我有很大的数字时,例如123456789,我会收到此错误消息Stack overflow (stack size 261120).我相信因为正确的答案是(3 3 3607 3803),所以我的程序一旦用两个前一个元素(3 3)构造了列表,查找下一个素数将花费很长时间.如何优化代码?

I have a problem of optimisation. When I have a big number such as 123456789, I get this error message Stack overflow (stack size 261120). I believe because since the correct answer is (3 3 3607 3803), my program once it constructs the list with the two first elements (3 3), it will take so long to find the next prime factor. How can I optimise my code?

 CL-USER 53 > (prime-factors 512)
 (2 2 2 2 2 2 2 2 2)

 CL-USER 54 > (prime-factors 123456789)

 Stack overflow (stack size 261120).
   1 (abort) Return to level 0.
   2 Return to top loop level 0.

 Type :b for backtrace or :c <option number> to proceed.
 Type :bug-form "<subject>" for a bug report template or :? for other options

推荐答案

https://codereview.stackexchange.com复制/a/189932/20936 :

您的代码有几个问题.

  1. is-prime是C/Java样式.使用者使用primepprime-number-p.
  2. zerop (= 0 ...)更清晰.
  3. 行人使用 indentation 而不是paren计数来读取代码.你的因此,代码实际上是不可读的.如果您使用Emacs,请使用不确定如何正确格式化Lisp.
  1. is-prime is C/Java style. Lispers use primep or prime-number-p.
  2. zerop is clearer than (= 0 ...).
  3. Lispers use indentation, not paren counting, to read code. Yourcode is thus virtually unreadable. Please use Emacs if you areunsure how to format lisp properly.

堆栈溢出

is-prime是尾递归的,因此,如果编译它,它应该成为简单的循环,应该没有堆栈问题.

Stack overflow

is-prime is tail-recursive, so if you compile it, it should become asimple loop and there should be no stack issues.

但是,不要着急.

让我们使用 trace 来查看问题:

Let us use trace to see theproblems:

> (prime-factors 17)
1. Trace: (IS-PRIME '17)
2. Trace: (IS-PRIME '17 '15)
3. Trace: (IS-PRIME '17 '14)
4. Trace: (IS-PRIME '17 '13)
5. Trace: (IS-PRIME '17 '12)
6. Trace: (IS-PRIME '17 '11)
7. Trace: (IS-PRIME '17 '10)
8. Trace: (IS-PRIME '17 '9)
9. Trace: (IS-PRIME '17 '8)
10. Trace: (IS-PRIME '17 '7)
11. Trace: (IS-PRIME '17 '6)
12. Trace: (IS-PRIME '17 '5)
13. Trace: (IS-PRIME '17 '4)
14. Trace: (IS-PRIME '17 '3)
15. Trace: (IS-PRIME '17 '2)
16. Trace: (IS-PRIME '17 '1)
16. Trace: IS-PRIME ==> T
15. Trace: IS-PRIME ==> T
14. Trace: IS-PRIME ==> T
13. Trace: IS-PRIME ==> T
12. Trace: IS-PRIME ==> T
11. Trace: IS-PRIME ==> T
10. Trace: IS-PRIME ==> T
9. Trace: IS-PRIME ==> T
8. Trace: IS-PRIME ==> T
7. Trace: IS-PRIME ==> T
6. Trace: IS-PRIME ==> T
5. Trace: IS-PRIME ==> T
4. Trace: IS-PRIME ==> T
3. Trace: IS-PRIME ==> T
2. Trace: IS-PRIME ==> T
1. Trace: IS-PRIME ==> T
(17)

仅需要进行(isqrt 17) = 4次迭代时,您将执行17次迭代.

You do 17 iterations when only (isqrt 17) = 4 iterations are necessary.

现在编译is-prime将递归转换为循环并查看:

Now compile is-prime to turn recursion into a loop and see:

> (prime-factors 12345)
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '2)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '5)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '823)
1. Trace: IS-PRIME ==> T
(3 5 823)

您正在多次检查相同数字的素数!

You are checking the primality of the same numbers several times!

primep可以找到除数,而不仅仅是检查素数.

primep can find a divisor, not just check primality.

(defun compositep (n &optional (d (isqrt n)))
  "If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
  (and (> n 1)
       (> d 1)
       (if (zerop (rem n d))
           d
           (compositep n (- d 1)))))

(defun prime-decomposition (n)
  "Return the prime decomposition of n."
  (let ((f (compositep n)))
    (if f
        (nconc (prime-decomposition (/ n f))
               (prime-decomposition f))
        (list n))))

请注意,最终的优化是可能的-记忆力compositep:

Note that one final optimization is possible -memoization ofcompositep:

(let ((known-composites (make-hash-table)))
  (defun compositep (n &optional (d (isqrt n)))
    "If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
    (multiple-value-bind (value found-p) (gethash n known-composites)
      (if found-p
          value
          (setf (gethash n known-composites)
                (and (> n 1)
                     (> d 1)
                     (if (zerop (rem n d))
                         d
                         (compositep n (- d 1)))))))))

,或者更好的是,prime-decomposition:

(let ((known-decompositions (make-hash-table)))
  (defun prime-decomposition (n)
    "Return the prime decomposition of n."
    (or (gethash n known-decompositions)
        (setf (gethash n known-decompositions)
              (let ((f (compositep n)))
                (if f
                    (append (prime-decomposition (/ n f))
                            (prime-decomposition f))
                    (list n)))))))

请注意用法或 append而不是nconc .

note the use or append instead ofnconc.

另一个有趣的优化是更改compositep从下降到上升.这会大大加快速度,因为它会更早地终止经常:

Another interesting optimization is changing the iteration incompositep from descending to ascending.This should speedup it up considerably as it would terminate early moreoften:

(let ((known-composites (make-hash-table)))
  (defun compositep (n)
    "If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
    (multiple-value-bind (value found-p) (gethash n known-composites)
      (if found-p
          value
          (setf (gethash n known-composites)
                (loop for d from 2 to (isqrt n)
                  when (zerop (rem n d))
                  return d))))))

这篇关于我如何优化我的递归Lisp函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 20:54