问题描述
我正在尝试创建一个函数prime-factors
,该函数返回数字的素数.为此,我创建了is-prime
函数,并创建了prime-factors-helper
函数,将对主要因子进行递归检查.
I am trying to create a function prime-factors
that returns the prime factors of a number. To do so, I created is-prime
function, and prime-factors-helper
that will do a recursive check of the prime factors.
(defun is-prime (n &optional (d (- n 1)))
(if (/= n 1) (or (= d 1)
(and (/= (rem n d) 0)
(is-prime n (- d 1)))) ()))
(defun prime-factors-helper (x n)
(if (is-prime x)
(list x)
(if (is-prime n)
(if (AND (= (mod x n) 0) (<= n (/ x 2)))
(cons n (prime-factors-helper (/ x n) n))
(prime-factors-helper x (+ 1 n)))
(prime-factors-helper x (+ 1 n)))))
(defun prime-factors (x)
(prime-factors-helper x 2))
问题
我有一个乐观的问题.当我有很大的数字时,例如123456789
,我会收到此错误消息Stack overflow (stack size 261120)
.我相信因为正确的答案是(3 3 3607 3803)
,所以我的程序一旦用两个前一个元素(3 3)
构造了列表,查找下一个素数将花费很长时间.如何优化代码?
I have a problem of optimisation. When I have a big number such as 123456789
, I get this error message Stack overflow (stack size 261120)
. I believe because since the correct answer is (3 3 3607 3803)
, my program once it constructs the list with the two first elements (3 3)
, it will take so long to find the next prime factor. How can I optimise my code?
CL-USER 53 > (prime-factors 512)
(2 2 2 2 2 2 2 2 2)
CL-USER 54 > (prime-factors 123456789)
Stack overflow (stack size 261120).
1 (abort) Return to level 0.
2 Return to top loop level 0.
Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options
推荐答案
从 https://codereview.stackexchange.com复制/a/189932/20936 :
您的代码有几个问题.
-
is-prime
是C/Java样式.使用者使用primep
或prime-number-p
. -
zerop
比(= 0 ...)
更清晰. - 行人使用 indentation 而不是paren计数来读取代码.你的因此,代码实际上是不可读的.如果您使用Emacs,请使用不确定如何正确格式化Lisp.
is-prime
is C/Java style. Lispers useprimep
orprime-number-p
.zerop
is clearer than(= 0 ...)
.- Lispers use indentation, not paren counting, to read code. Yourcode is thus virtually unreadable. Please use Emacs if you areunsure how to format lisp properly.
堆栈溢出
is-prime
是尾递归的,因此,如果编译它,它应该成为简单的循环,应该没有堆栈问题.
Stack overflow
is-prime
is tail-recursive, so if you compile it, it should become asimple loop and there should be no stack issues.
但是,不要着急.
让我们使用 trace
来查看问题:
Let us use trace
to see theproblems:
> (prime-factors 17)
1. Trace: (IS-PRIME '17)
2. Trace: (IS-PRIME '17 '15)
3. Trace: (IS-PRIME '17 '14)
4. Trace: (IS-PRIME '17 '13)
5. Trace: (IS-PRIME '17 '12)
6. Trace: (IS-PRIME '17 '11)
7. Trace: (IS-PRIME '17 '10)
8. Trace: (IS-PRIME '17 '9)
9. Trace: (IS-PRIME '17 '8)
10. Trace: (IS-PRIME '17 '7)
11. Trace: (IS-PRIME '17 '6)
12. Trace: (IS-PRIME '17 '5)
13. Trace: (IS-PRIME '17 '4)
14. Trace: (IS-PRIME '17 '3)
15. Trace: (IS-PRIME '17 '2)
16. Trace: (IS-PRIME '17 '1)
16. Trace: IS-PRIME ==> T
15. Trace: IS-PRIME ==> T
14. Trace: IS-PRIME ==> T
13. Trace: IS-PRIME ==> T
12. Trace: IS-PRIME ==> T
11. Trace: IS-PRIME ==> T
10. Trace: IS-PRIME ==> T
9. Trace: IS-PRIME ==> T
8. Trace: IS-PRIME ==> T
7. Trace: IS-PRIME ==> T
6. Trace: IS-PRIME ==> T
5. Trace: IS-PRIME ==> T
4. Trace: IS-PRIME ==> T
3. Trace: IS-PRIME ==> T
2. Trace: IS-PRIME ==> T
1. Trace: IS-PRIME ==> T
(17)
仅需要进行(isqrt 17) = 4
次迭代时,您将执行17次迭代.
You do 17 iterations when only (isqrt 17) = 4
iterations are necessary.
现在编译is-prime
将递归转换为循环并查看:
Now compile is-prime
to turn recursion into a loop and see:
> (prime-factors 12345)
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '2)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '5)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '823)
1. Trace: IS-PRIME ==> T
(3 5 823)
您正在多次检查相同数字的素数!
You are checking the primality of the same numbers several times!
primep
可以找到除数,而不仅仅是检查素数.
primep
can find a divisor, not just check primality.
(defun compositep (n &optional (d (isqrt n)))
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(and (> n 1)
(> d 1)
(if (zerop (rem n d))
d
(compositep n (- d 1)))))
(defun prime-decomposition (n)
"Return the prime decomposition of n."
(let ((f (compositep n)))
(if f
(nconc (prime-decomposition (/ n f))
(prime-decomposition f))
(list n))))
请注意,最终的优化是可能的-记忆力compositep
:
Note that one final optimization is possible -memoization ofcompositep
:
(let ((known-composites (make-hash-table)))
(defun compositep (n &optional (d (isqrt n)))
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(multiple-value-bind (value found-p) (gethash n known-composites)
(if found-p
value
(setf (gethash n known-composites)
(and (> n 1)
(> d 1)
(if (zerop (rem n d))
d
(compositep n (- d 1)))))))))
,或者更好的是,prime-decomposition
:
(let ((known-decompositions (make-hash-table)))
(defun prime-decomposition (n)
"Return the prime decomposition of n."
(or (gethash n known-decompositions)
(setf (gethash n known-decompositions)
(let ((f (compositep n)))
(if f
(append (prime-decomposition (/ n f))
(prime-decomposition f))
(list n)))))))
请注意用法或 append
而不是nconc
.
note the use or append
instead ofnconc
.
另一个有趣的优化是更改compositep
从下降到上升.这会大大加快速度,因为它会更早地终止经常:
Another interesting optimization is changing the iteration incompositep
from descending to ascending.This should speedup it up considerably as it would terminate early moreoften:
(let ((known-composites (make-hash-table)))
(defun compositep (n)
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(multiple-value-bind (value found-p) (gethash n known-composites)
(if found-p
value
(setf (gethash n known-composites)
(loop for d from 2 to (isqrt n)
when (zerop (rem n d))
return d))))))
这篇关于我如何优化我的递归Lisp函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!