问题描述
我正在尝试,并使用几乎相同的代码:
I am trying out the Dataset API for my input pipeline shown in the TensorFlow documentation and use almost the same code:
tr_data = Dataset.from_tensor_slices((train_images, train_labels))
tr_data = tr_data.map(input_parser, NUM_CORES, output_buffer_size=2000)
tr_data = tr_data.batch(BATCH_SIZE)
tr_data = tr_data.repeat(EPOCHS)
iterator = dataset.make_one_shot_iterator()
next_example, next_label = iterator.get_next()
# Script throws error here
loss = model_function(next_example, next_label)
with tf.Session(...) as sess:
sess.run(tf.global_variables_initializer())
while True:
try:
train_loss = sess.run(loss)
except tf.errors.OutOfRangeError:
print("End of training dataset.")
break
这应该更快,因为它避免使用缓慢的feed_dicts。但是我无法使其与我的模型兼容,该模型是简化的LeNet架构。 问题是我的 model_function()
中的 tf.layers.dense
已知的输入形状(我想是因为它必须事先知道权重的数量)。但是 next_example
和 next_label
只能通过在会话中运行它们来确定形状。在评估它们的形状之前,它们只是不确定的?
This should be faster since it avoids using the slow feed_dicts. But I can't make it work with my model, which is a simplified LeNet architecture. The problem is the tf.layers.dense
in my model_function()
which expects an known input shape (I guess because it has to know the number of weights beforehand). But next_example
and next_label
only get their shape by running them in the session. Before evaluating them their shape is just undefined ?
声明 model_function()
抛出此错误:
现在,我不知道我是否
预先感谢!
编辑1:
下面是我的模型,它在第一个密集层抛出了错误
Edit 1:Below is my model and it throws the error at the first dense layer
def conv_relu(input, kernel_shape):
# Create variable named "weights".
weights = tf.get_variable("weights", kernel_shape,
initializer=tf.random_normal_initializer())
# Create variable named "biases".
biases = tf.get_variable("biases", kernel_shape[3],
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(input, weights,
strides=[1, 1, 1, 1], padding='VALID')
return tf.nn.relu(conv + biases)
def fully(input, output_dim):
assert len(input.get_shape())==2, 'Wrong input shape, need flattened tensor as input'
input_dim = input.get_shape()[1]
weight = tf.get_variable("weight", [input_dim, output_dim],
initializer=tf.random_normal_initializer())
bias = tf.get_variable('bias', [output_dim],
initializer=tf.random_normal_initializer())
fully = tf.nn.bias_add(tf.matmul(input, weight), bias)
return fully
def simple_model(x):
with tf.variable_scope('conv1'):
conv1 = conv_relu(x, [3,3,1,10])
conv1 = tf.nn.max_pool(conv1,[1,2,2,1],[1,2,2,1],'SAME')
with tf.variable_scope('conv2'):
conv2 = conv_relu(conv1, [3,3,10,10])
conv2 = tf.nn.max_pool(conv2,[1,2,2,1],[1,2,2,1],'SAME')
with tf.variable_scope('conv3'):
conv3 = conv_relu(conv2, [3,3,10,10])
conv3 = tf.nn.max_pool(conv3,[1,2,2,1],[1,2,2,1],'SAME')
flat = tf.contrib.layers.flatten(conv3)
with tf.variable_scope('fully1'):
fully1 = tf.layers.dense(flat, 1000)
fully1 = tf.nn.relu(fully1)
with tf.variable_scope('fully2'):
fully2 = tf.layers.dense(fully1, 100)
fully2 = tf.nn.relu(fully2)
with tf.variable_scope('output'):
output = tf.layers.dense(fully2, 4)
fully1 = tf.nn.relu(output)
return output
编辑2:
在这里您可以看到张量的打印。请注意,next_example没有形状
Here you see the print of the tensors. Notice that next_example does not have a shape
推荐答案
我自己找到了答案。
遵循此如果您事先知道图像的大小,则简单的解决方法是使用 tf.Tensor.set_shape
设置形状。
Following this thread the easy fix is to just set the shape with tf.Tensor.set_shape
if you know your image sizes beforehand.
def input_parser(img_path, label):
# read the img from file
img_file = tf.read_file(img_path)
img_decoded = tf.image.decode_image(img_file, channels=1)
img_decoded = tf.image.convert_image_dtype(img_decoded, dtype=tf.float32)
img_decoded.set_shape([90,160,1]) # This line was missing
return img_decoded, label
如果tensorflow文档包含这一行,那将是很好的。
It would have been nice if the tensorflow documentation included this line.
这篇关于如何将TensorFlow Dataset API与密集层结合使用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!