问题描述
我正在建立一个模型,该模型使用递归层(GRU)将字符串转换为另一个字符串.我已经尝试了Dense和TimeDistributed(Dense)层作为最后一层,但是我不了解使用return_sequences = True时两者之间的区别,特别是因为它们似乎具有相同数量的参数
I'm building a model that converts a string to another string using recurrent layers (GRUs). I have tried both a Dense and a TimeDistributed(Dense) layer as the last-but-one layer, but I don't understand the difference between the two when using return_sequences=True, especially as they seem to have the same number of parameters.
我的简化模型如下:
InputSize = 15
MaxLen = 64
HiddenSize = 16
inputs = keras.layers.Input(shape=(MaxLen, InputSize))
x = keras.layers.recurrent.GRU(HiddenSize, return_sequences=True)(inputs)
x = keras.layers.TimeDistributed(keras.layers.Dense(InputSize))(x)
predictions = keras.layers.Activation('softmax')(x)
该网络的摘要是:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 15) 0
_________________________________________________________________
gru_1 (GRU) (None, 64, 16) 1536
_________________________________________________________________
time_distributed_1 (TimeDist (None, 64, 15) 255
_________________________________________________________________
activation_1 (Activation) (None, 64, 15) 0
=================================================================
这对我来说很有意义,因为我对TimeDistributed的理解是,它在所有时间点都应用了同一层,因此Dense层具有16 * 15 + 15 = 255个参数(权重+偏差).
This makes sense to me as my understanding of TimeDistributed is that it applies the same layer at all timepoints, and so the Dense layer has 16*15+15=255 parameters (weights+biases).
但是,如果我切换到一个简单的Dense层:
However, if I switch to a simple Dense layer:
inputs = keras.layers.Input(shape=(MaxLen, InputSize))
x = keras.layers.recurrent.GRU(HiddenSize, return_sequences=True)(inputs)
x = keras.layers.Dense(InputSize)(x)
predictions = keras.layers.Activation('softmax')(x)
我仍然只有255个参数:
I still only have 255 parameters:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 64, 15) 0
_________________________________________________________________
gru_1 (GRU) (None, 64, 16) 1536
_________________________________________________________________
dense_1 (Dense) (None, 64, 15) 255
_________________________________________________________________
activation_1 (Activation) (None, 64, 15) 0
=================================================================
我想知道这是否是因为Dense()将仅使用形状中的最后一个维度,并将其他所有内容有效地视为类似批处理的维度.但是我不再确定Dense和TimeDistributed(Dense)有什么区别.
I wonder if this is because Dense() will only use the last dimension in the shape, and effectively treat everything else as a batch-like dimension. But then I'm no longer sure what the difference is between Dense and TimeDistributed(Dense).
更新:查看 https: //github.com/fchollet/keras/blob/master/keras/layers/core.py 似乎Dense似乎仅使用最后一个尺寸来调整尺寸:
Update Looking at https://github.com/fchollet/keras/blob/master/keras/layers/core.py it does seem that Dense uses the last dimension only to size itself:
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(input_dim, self.units),
它还使用keras.dot来应用权重:
It also uses keras.dot to apply the weights:
def call(self, inputs):
output = K.dot(inputs, self.kernel)
keras.dot的文档暗示它可以在n维张量上正常工作.我想知道它的确切行为是否意味着实际上将在每个时间步调用Dense().如果是这样,问题仍然在于在这种情况下TimeDistributed()会实现什么.
The docs of keras.dot imply that it works fine on n-dimensional tensors. I wonder if its exact behavior means that Dense() will in effect be called at every time step. If so, the question still remains what TimeDistributed() achieves in this case.
推荐答案
TimeDistributedDense在GRU/LSTM Cell展开期间的每个时间步骤都应用相同的密度.因此,误差函数将在预测的标签序列与实际的标签序列之间. (通常是序列到序列标记问题的要求.)
TimeDistributedDense applies a same dense to every time step during GRU/LSTM Cell unrolling. So the error function will be between predicted label sequence and the actual label sequence. (Which is normally the requirement for sequence to sequence labeling problems).
但是,如果return_sequences = False,则在最后一个单元格仅应用一次密集层.当RNN用于分类问题时,通常是这种情况.如果return_sequences = True,则将密集层应用于每个时间步,就像TimeDistributedDense一样.
However, with return_sequences=False, Dense layer is applied only once at the last cell. This is normally the case when RNNs are used for classification problem. If return_sequences=True then Dense layer is applied to every timestep just like TimeDistributedDense.
因此对于每个模型而言,两者都是相同的,但是如果您将第二个模型更改为"return_sequences = False",则仅在最后一个单元格应用密度.尝试更改它,模型将抛出错误,因为Y的大小为[Batch_size,InputSize],它不再是要排序的序列,而是要标注问题的完整序列.
So for as per your models both are same, but if u change your second model to "return_sequences=False" then the Dense will be applied only at the last cell. Try changing it and the model will throw as error because then the Y will be of size [Batch_size, InputSize], it is no more a sequence to sequence but a full sequence to label problem.
from keras.models import Sequential
from keras.layers import Dense, Activation, TimeDistributed
from keras.layers.recurrent import GRU
import numpy as np
InputSize = 15
MaxLen = 64
HiddenSize = 16
OutputSize = 8
n_samples = 1000
model1 = Sequential()
model1.add(GRU(HiddenSize, return_sequences=True, input_shape=(MaxLen, InputSize)))
model1.add(TimeDistributed(Dense(OutputSize)))
model1.add(Activation('softmax'))
model1.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model2 = Sequential()
model2.add(GRU(HiddenSize, return_sequences=True, input_shape=(MaxLen, InputSize)))
model2.add(Dense(OutputSize))
model2.add(Activation('softmax'))
model2.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model3 = Sequential()
model3.add(GRU(HiddenSize, return_sequences=False, input_shape=(MaxLen, InputSize)))
model3.add(Dense(OutputSize))
model3.add(Activation('softmax'))
model3.compile(loss='categorical_crossentropy', optimizer='rmsprop')
X = np.random.random([n_samples,MaxLen,InputSize])
Y1 = np.random.random([n_samples,MaxLen,OutputSize])
Y2 = np.random.random([n_samples, OutputSize])
model1.fit(X, Y1, batch_size=128, nb_epoch=1)
model2.fit(X, Y1, batch_size=128, nb_epoch=1)
model3.fit(X, Y2, batch_size=128, nb_epoch=1)
print(model1.summary())
print(model2.summary())
print(model3.summary())
在上面的示例中,模型1和模型2的体系结构是样本(序列模型的序列),模型3是完整序列到模型的标签.
In the above example architecture of model1 and model2 are sample (sequence to sequence models) and model3 is a full sequence to label model.
这篇关于Keras中的TimeDistributed(Dense)vs Dense-相同数量的参数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!