问题描述
参考 这篇文章 之前问过,因为建议创建一个具有独立推理和训练部分的图.
Referencing this post asked previously, as the suggestion was to create a graph that has separate inference and training parts.
非常感谢样板代码.
推荐答案
存储库中的MNIST卷积就是一个例子——tensorflow/tensorflow/models/image/mnist/convolutional.py
MNIST convolution in the repository is an example -- tensorflow/tensorflow/models/image/mnist/convolutional.py
当您将模型构建代码分解为一个函数(convolutional.py
中的model
)时,它遵循一种模式,并为评估和训练部分分别调用它
It follows a pattern when you factor out model construction code into a function (model
in convolutional.py
), and call it separately for the eval and training parts
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, train_labels_node))
eval_prediction = tf.nn.softmax(model(eval_data))
对于训练,您输入 train_data_node
并最小化 loss
,对于 eval,您输入 eval_data
节点并在 处获得结果评估预测
For training you feed into train_data_node
and minimize loss
, for eval, you feed into eval_data
node and get the results at eval_prediction
这篇关于如何构建具有独立推理和训练部分的 TF Graph?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!