本文介绍了检测地理群集的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我有一个包含经度,纬度的R data.frame,它横跨整个美国地图。当X个条目都在一个小的地理区域内,例如几度经度&几度纬度,我希望能够检测到这一点,然后让我的程序返回地理边界框的坐标。是否有Python或R CRAN包已经这样做?如果没有,我该如何确定这些信息? 我能够将Joran的答案和Dan H的评论结合起来。这是一个输出示例: python代码为R:map()和rect()发出函数。这个美国示例地图是用以下方式创建的: map('state',plot = TRUE,fill = FALSE,col = palette( )) 然后您可以在R GUI解释器中相应地使用rect() (见下面)。 pre $ 从集合中导入数学 import defaultdict to_rad = math .pi / 180.0#将lat或lng转换为弧度 fname =site.tsv#文件格式:LAT\tLONG threshhold_dist = 50#根据需要调整 threshhold_locations = 15#群集中需要的最少位置数 def dist(lat1,lng1,lat2,lng2):全局to_rad earth_radius_km = 6371 dLat =(lat2-lat1)* to_rad dLon =(lng2-lng1)* to_rad lat1_rad = lat1 * to_rad lat2_rad = lat2 * to_rad a = math。 sin(dLat / 2)* math.sin(dLat / 2)+ math.sin(dLon / 2)* math.sin(dLon / 2)* math.cos(lat1_rad)* math.cos(lat2_rad)c = 2 * m ath.atan2(math.sqrt(a),math.sqrt(1-a)); dist = earth_radius_km * c return dist def bounding_box(src,neighbors): neighbors.append(src)#nw = NorthWest se =东南 nw_lat = -360 nw_lng = 360 se_lat = 360 se_lng = -360 (y,x)邻居: if y> nw_lat:nw_lat = y 如果x> se_lng:se_lng = x if y< se_lat:se_lat = y 如果x #添加一些填充物 pad = 0.5 nw_lat + =填充物 nw_lng - =填充物 se_lat - =填充物 se_lng + = pad #适用于r的map()函数 return(se_lat,nw_lat,nw_lng,se_lng) $ b $ def sitesDist(site1,site2 ):#只是一个助手在下面的短列表理解返回dist(site1 [0],site1 [1],site2 [0],site2 [1])$ ​​b $ b def load_site_data():全局fname sites = defaultdict(元组) $ b $ data = open(fname,encoding =latin-1) data.readline ()#skip header for line in data: line = line [: - 1] slots = line.split(\ t) lat = float( slot [0]) lng = float(slots [1])$ ​​b $ b lat_rad = lat * math.pi / 180.0 lng_rad = lng * math.pi / 180.0 sites [ (lat,lng)] =(lat,lng)#(lat_rad,lng_rad)返回地点 def main(): sites_dict = {} sites = load_site_data()用于站点中的站点:$ b​​ $ b#为每个站点将其放入字典中,其值为邻居数组 sites_dict [site] = [x for site in site如果x!= site和sitesDist(site,x)< threshhold_dist] 结果= {} 用于网站站点:$ b​​ $ bj = len(sites_dict [网站])如果j> = threshhold_locations: bbox结果中的coord = bounding_box(site,sites_dict [site]) results [coord] = coord : yx =ylim = c(%s,%s ),xlim = c(%s,%s)%(results [bbox])#(se_lat,nw_lat,nw_lng,se_lng) print('map(county,plot = T,fill = T ,col = palette(),%s)'%yx) rect ='rect(%s,%s,%s,%s,col = c(red))'%(results [bbox [b]] [2],结果[bbox] [0],结果[bbox] [3],结果[bbox] [2]) print(rect) print() main() 以下是一个TSV文件示例(site.tsv) LAT LONG 36.3312 -94.1334 36.6828 -121.791 37.2307 -121.96 37.3857 - 122.026 37.3857 -122.026 37.3857 -122.026 37.3895 -97.644 37.3992 -122.139 37.3992 -122.139 37.402 -122 .078 37.402 -122.078 37.402 -122.078 37.402 -122.078 37.402 -122.078 37.48 -122.144 37.48 -122.144 37.55 126.967 使用我的数据集,我的python脚本的输出显示在美国地图上。 rect(-74.989,39.7667,-73.0419,41.5209,col = c(red )) rect(-123.005,36.8144,-121.392,38.3672,col = c(green)) rect(-78.2422,38.2474,-76.3,39.9282,col = c(blue )) 添加于2013-05-01 for Yacob 这两行为您提供了全面的目标...... map(county,plot = T) rect(-122.644,36.7307,-121.46,37.98,col = c(red)) 如果您想缩小地图的一部分,可以使用 ylim 和 xlim map(county ,plot = T,ylim = c(36.7307,37.98),xlim = c(-122.644,-121.46))#或者用于更多着色,但选择其中一个或另一个map(country)命令 map(county,plot = T,fill = T,col = palette(),ylim = c(36.7307,37.98),xlim = c(-122.644,-121.46)) rect( - 122.644,36.7307,-121.46,37.98,col = c(red)) 您将要使用'世界'地图... map(world,plot = T) 我已经使用了下面发布的python代码很久了,所以我将尽我所能来帮助你。 threshhold_dist是边界框的大小,即:地理区域 theshhold_location是在边界框中所需的经纬度/点数,以便它被视为一个群集。 这是一个完整的例子。 TSV文件位于pastebin.com上。我还包含一个由R生成的图像,其中包含所有rect()命令的输出。 #pyclusters.py #May-02-2013 #-John Taylor #latlng.tsv位于http://pastebin.com/cyvEdx3V #使用 RAW Paste Data来保存制表符 从集合中导入数学 import defaultdict #另请参见:http://www.geomidpoint.com/example .html #参见:http://www.movable-type.co.uk/scripts/latlong.html to_rad = math.pi / 180.0#convert lat or lng to弧度 fname =latlng.tsv#文件格式:LAT\tLONG threshhold_dist = 20#根据您的需要调整 threshhold_locations = 20#群集中最少需要的位置数量$ b (经纬度):x = math.cos(lat) * math.sin(lng)z = math.sin(lat) return(x,y,z) def cart2corrd(x,y ,z): lon = math.atan2(y,x) hyp = math.sqrt(x * x + y * y) lat = math.atan2(z,hyp) return(lat,lng) def dist(lat1,lng1,lat2,lng2):全局to_rad,earth_radius_km dLat =(lat2 -lat1)* to_rad dLon =(lng2-lng1)* to_rad lat1_rad = lat1 * to_rad lat2_rad = lat2 * to_rad a = math.sin(dLat / 2)* math.sin(dLat / 2)+ math.sin(dLon / 2)* math.sin(dLon / 2)* math.cos(lat1_rad)* math.cos(lat2_rad)c = 2 * math.atan2(math.sqrt(a),math.sqrt(1-a)); dist = earth_radius_km * c return dist def bounding_box(src,neighbors): neighbors.append(src)#nw = NorthWest se =东南 nw_lat = -360 nw_lng = 360 se_lat = 360 se_lng = -360 (y,x)邻居: if y> nw_lat:nw_lat = y 如果x> se_lng:se_lng = x if y< se_lat:se_lat = y 如果x #添加一些填充物 pad = 0.5 nw_lat + =填充物 nw_lng - =填充物 se_lat - =填充物 se_lng + = pad #print(answer:) #print(nw lat,lng:%s%s%(nw_lat,nw_lng))$ b $适用于r的map()函数 return(se_lat,nw_lat,nw_lng,%s,%s,%s)%b $ se_lng) def sitesDist(site1,site2):#只是一个帮助短缺的列表comprehensioin低于 return dist(site1 [0],site1 [1],site2 [ 0),site2 [1])$ ​​b $ b def load_site_data():全局fname $ b $ sites = defaultdict(元组) $ b data = open(fname ,编码=latin-1) data.readline()#跳过标题用于数据中的行: line =行[: - 1] slots =行。 split(\ t) lat = float(slots [0]) lng = float(slots [1])$ ​​b $ b lat_rad = lat * math.pi / 180.0 lng_rad = lng *数学.pi / 180.0 sites [(lat,lng)] =(lat,lng)#(lat_rad,lng_rad)返回地点 def main(): color_list =(red,blue,green,yellow,orange,brown,pink,purple) color_idx = 0 sites_dict = { } sites = load_site_data()为站点中的站点:$ b​​ $ b#为每个站点放在一个词典中,它的值是一个邻居数组 sites_dict [site] = [ x for site in if if!= site and sitesDist(site,x)< threshhold_dist] $ b print() print('map(state,plot = T)')#或使用:县而不是州 print( ) 结果= {} 在站点中的站点:$ b​​ $ bj = len(sites_dict [site])如果j> = threshhold_locations: $ co $ = b $ ,%s),xlim = c(%s,%s)%(results [bbox])#(se_lat,nw_lat,nw_lng,se_lng) #important! #如果你想为每个群集分配一个映射,取消注释这一行 #print('map(county,plot = T,fill = T,col = palette(),%s)' %yx) len(color_list)== color_idx: color_idx = 0 rect ='rect(%s,%s,%s,%s,col = c(%yx)结果[bbox] [2],结果[bbox] [0],结果[bbox] [3],结果[bbox] [1],颜色列表[color_idx]) color_idx + = 1 print(rect) print() main() I have a R data.frame containing longitude, latitude which spans over the entire USA map. When X number of entries are all within a small geographic region of say a few degrees longitude & a few degrees latitude, I want to be able to detect this and then have my program then return the coordinates for the geographic bounding box. Is there a Python or R CRAN package that already does this? If not, how would I go about ascertaining this information? 解决方案 I was able to combine Joran's answer along with Dan H's comment. This is an example ouput:The python code emits functions for R: map() and rect(). This USA example map was created with:map('state', plot = TRUE, fill = FALSE, col = palette())and then you can apply the rect()'s accordingly from with in the R GUI interpreter (see below).import mathfrom collections import defaultdictto_rad = math.pi / 180.0 # convert lat or lng to radiansfname = "site.tsv" # file format: LAT\tLONGthreshhold_dist=50 # adjust to your needsthreshhold_locations=15 # minimum # of locations needed in a clusterdef dist(lat1,lng1,lat2,lng2): global to_rad earth_radius_km = 6371 dLat = (lat2-lat1) * to_rad dLon = (lng2-lng1) * to_rad lat1_rad = lat1 * to_rad lat2_rad = lat2 * to_rad a = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLon/2) * math.sin(dLon/2) * math.cos(lat1_rad) * math.cos(lat2_rad) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)); dist = earth_radius_km * c return distdef bounding_box(src, neighbors): neighbors.append(src) # nw = NorthWest se=SouthEast nw_lat = -360 nw_lng = 360 se_lat = 360 se_lng = -360 for (y,x) in neighbors: if y > nw_lat: nw_lat = y if x > se_lng: se_lng = x if y < se_lat: se_lat = y if x < nw_lng: nw_lng = x # add some padding pad = 0.5 nw_lat += pad nw_lng -= pad se_lat -= pad se_lng += pad # sutiable for r's map() function return (se_lat,nw_lat,nw_lng,se_lng)def sitesDist(site1,site2): #just a helper to shorted list comprehension below return dist(site1[0],site1[1], site2[0], site2[1])def load_site_data(): global fname sites = defaultdict(tuple) data = open(fname,encoding="latin-1") data.readline() # skip header for line in data: line = line[:-1] slots = line.split("\t") lat = float(slots[0]) lng = float(slots[1]) lat_rad = lat * math.pi / 180.0 lng_rad = lng * math.pi / 180.0 sites[(lat,lng)] = (lat,lng) #(lat_rad,lng_rad) return sitesdef main(): sites_dict = {} sites = load_site_data() for site in sites: #for each site put it in a dictionary with its value being an array of neighbors sites_dict[site] = [x for x in sites if x != site and sitesDist(site,x) < threshhold_dist] results = {} for site in sites: j = len(sites_dict[site]) if j >= threshhold_locations: coord = bounding_box( site, sites_dict[site] ) results[coord] = coord for bbox in results: yx="ylim=c(%s,%s), xlim=c(%s,%s)" % (results[bbox]) #(se_lat,nw_lat,nw_lng,se_lng) print('map("county", plot=T, fill=T, col=palette(), %s)' % yx) rect='rect(%s,%s, %s,%s, col=c("red"))' % (results[bbox][2], results[bbox][0], results[bbox][3], results[bbox][2]) print(rect) print("")main()Here is an example TSV file (site.tsv)LAT LONG36.3312 -94.133436.6828 -121.79137.2307 -121.9637.3857 -122.02637.3857 -122.02637.3857 -122.02637.3895 -97.64437.3992 -122.13937.3992 -122.13937.402 -122.07837.402 -122.07837.402 -122.07837.402 -122.07837.402 -122.07837.48 -122.14437.48 -122.14437.55 126.967With my data set, the output of my python script, shown on the USA map. I changed the colors for clarity.rect(-74.989,39.7667, -73.0419,41.5209, col=c("red"))rect(-123.005,36.8144, -121.392,38.3672, col=c("green"))rect(-78.2422,38.2474, -76.3,39.9282, col=c("blue"))Addition on 2013-05-01 for YacobThese 2 lines give you the over all goal...map("county", plot=T )rect(-122.644,36.7307, -121.46,37.98, col=c("red"))If you want to narrow in on a portion of a map, you can use ylim and xlimmap("county", plot=T, ylim=c(36.7307,37.98), xlim=c(-122.644,-121.46))# or for more coloring, but choose one or the other map("country") commandsmap("county", plot=T, fill=T, col=palette(), ylim=c(36.7307,37.98), xlim=c(-122.644,-121.46))rect(-122.644,36.7307, -121.46,37.98, col=c("red"))You will want to use the 'world' map...map("world", plot=T )It has been a long time since I have used this python code I have posted below so I will try my best to help you.threshhold_dist is the size of the bounding box, ie: the geographical areatheshhold_location is the number of lat/lng points needed with in the bounding box in order for it to be considered a cluster.Here is a complete example. The TSV file is located on pastebin.com. I have also included an image generated from R that contains the output of all of the rect() commands.# pyclusters.py# May-02-2013# -John Taylor# latlng.tsv is located at http://pastebin.com/cyvEdx3V# use the "RAW Paste Data" to preserve the tab charactersimport mathfrom collections import defaultdict# See also: http://www.geomidpoint.com/example.html# See also: http://www.movable-type.co.uk/scripts/latlong.htmlto_rad = math.pi / 180.0 # convert lat or lng to radiansfname = "latlng.tsv" # file format: LAT\tLONGthreshhold_dist=20 # adjust to your needsthreshhold_locations=20 # minimum # of locations needed in a clusterearth_radius_km = 6371def coord2cart(lat,lng): x = math.cos(lat) * math.cos(lng) y = math.cos(lat) * math.sin(lng) z = math.sin(lat) return (x,y,z)def cart2corrd(x,y,z): lon = math.atan2(y,x) hyp = math.sqrt(x*x + y*y) lat = math.atan2(z,hyp) return(lat,lng)def dist(lat1,lng1,lat2,lng2): global to_rad, earth_radius_km dLat = (lat2-lat1) * to_rad dLon = (lng2-lng1) * to_rad lat1_rad = lat1 * to_rad lat2_rad = lat2 * to_rad a = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLon/2) * math.sin(dLon/2) * math.cos(lat1_rad) * math.cos(lat2_rad) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)); dist = earth_radius_km * c return distdef bounding_box(src, neighbors): neighbors.append(src) # nw = NorthWest se=SouthEast nw_lat = -360 nw_lng = 360 se_lat = 360 se_lng = -360 for (y,x) in neighbors: if y > nw_lat: nw_lat = y if x > se_lng: se_lng = x if y < se_lat: se_lat = y if x < nw_lng: nw_lng = x # add some padding pad = 0.5 nw_lat += pad nw_lng -= pad se_lat -= pad se_lng += pad #print("answer:") #print("nw lat,lng : %s %s" % (nw_lat,nw_lng)) #print("se lat,lng : %s %s" % (se_lat,se_lng)) # sutiable for r's map() function return (se_lat,nw_lat,nw_lng,se_lng)def sitesDist(site1,site2): # just a helper to shorted list comprehensioin below return dist(site1[0],site1[1], site2[0], site2[1])def load_site_data(): global fname sites = defaultdict(tuple) data = open(fname,encoding="latin-1") data.readline() # skip header for line in data: line = line[:-1] slots = line.split("\t") lat = float(slots[0]) lng = float(slots[1]) lat_rad = lat * math.pi / 180.0 lng_rad = lng * math.pi / 180.0 sites[(lat,lng)] = (lat,lng) #(lat_rad,lng_rad) return sitesdef main(): color_list = ( "red", "blue", "green", "yellow", "orange", "brown", "pink", "purple" ) color_idx = 0 sites_dict = {} sites = load_site_data() for site in sites: #for each site put it in a dictionarry with its value being an array of neighbors sites_dict[site] = [x for x in sites if x != site and sitesDist(site,x) < threshhold_dist] print("") print('map("state", plot=T)') # or use: county instead of state print("") results = {} for site in sites: j = len(sites_dict[site]) if j >= threshhold_locations: coord = bounding_box( site, sites_dict[site] ) results[coord] = coord for bbox in results: yx="ylim=c(%s,%s), xlim=c(%s,%s)" % (results[bbox]) #(se_lat,nw_lat,nw_lng,se_lng) # important! # if you want an individual map for each cluster, uncomment this line #print('map("county", plot=T, fill=T, col=palette(), %s)' % yx) if len(color_list) == color_idx: color_idx = 0 rect='rect(%s,%s, %s,%s, col=c("%s"))' % (results[bbox][2], results[bbox][0], results[bbox][3], results[bbox][1], color_list[color_idx]) color_idx += 1 print(rect) print("")main() 这篇关于检测地理群集的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云!
08-07 08:53