问题描述
当我尝试在 RDD [(Int,ArrayBuffer [(Int,Double)])]
输入上应用方法(ComputeDwt)时,我遇到了上述异常。
我甚至使用扩展序列化
选项来序列化spark.Here中的对象是代码片段。
<$输入:系列:RDD [(Int,ArrayBuffer [(Int,Double)])]
DWTsample扩展Serialization是一个具有computeDwt函数的类。
sc:sparkContext
val kk:RDD [(Int,List [Double])] = series.map(t =>(t._1,new DWTsample()。computeDwt sc,t._2)))
错误:
org.apache.spark.SparkException:作业失败:java.io.NotSerializableException:org.apache.spark.SparkContext
org.apache.spark.SparkException:作业失败:java.io.NotSerializableException:org.apache.spark.SparkContext $ b $ org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1.apply(DAGScheduler.scala :760)
at org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1.apply(DAGScheduler.scala:758)
at scala.collection.mutable.ResizableArray $ class.foreach(ResizableArray .scala:60)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758)
at org.apache.spark.scheduler.DAGScheduler.org $ apache $ spark $ scheduler $ DAGScheduler $$ submitMissingTasks(DAGScheduler.scala:556)
at org.apache.spark.scheduler.DAGScheduler.org $ apache $ spark $ scheduler $ DAGScheduler $$ submitStage(DAGScheduler.scala:503)
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:361)
at org.apache。 spark.scheduler.DAGScheduler.org $ apache $ spark $ scheduler $ DAGScheduler $$ run(DAGScheduler.scala:441)
at org.apache.spark.scheduler.DAGScheduler $$ anon $ 1.run(DAGScheduler.scala: 149)
任何人都可以告诉我可能是什么问题,应该怎么做来克服这个问题?
series.map(t =>(t._1,new DWTsample()。computeDwt(sc,t._2)))
引用SparkContext( sc
),但SparkContext不可序列化。 SparkContext旨在公开在驱动程序上运行的操作;它不能被在worker上运行的代码引用/使用。
您必须重新构造代码,以使 sc
在映射函数关闭中未被引用。
I am facing above exception when I am trying to apply a method(ComputeDwt) on RDD[(Int,ArrayBuffer[(Int,Double)])]
input.I am even using extends Serialization
option to serialize objects in spark.Here is the code snippet.
input:series:RDD[(Int,ArrayBuffer[(Int,Double)])]
DWTsample extends Serialization is a class having computeDwt function.
sc: sparkContext
val kk:RDD[(Int,List[Double])]=series.map(t=>(t._1,new DWTsample().computeDwt(sc,t._2)))
Error:
org.apache.spark.SparkException: Job failed: java.io.NotSerializableException: org.apache.spark.SparkContext
org.apache.spark.SparkException: Job failed: java.io.NotSerializableException: org.apache.spark.SparkContext
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:760)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:758)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:758)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:556)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:503)
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:361)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:441)
at org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:149)
Could anyone suggest me what could be the problem and what should be done to overcome this issue?
The line
series.map(t=>(t._1,new DWTsample().computeDwt(sc,t._2)))
references the SparkContext (sc
) but SparkContext isn't serializable. SparkContext is designed to expose operations that are run on the driver; it can't be referenced/used by code that's run on workers.
You'll have to re-structure your code so that sc
isn't referenced in your map function closure.
这篇关于Spark作业由于java.io.NotSerializableException而失败:org.apache.spark.SparkContext的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!