问题描述
我有System.Windows.Shapes.Polygon对象,其布局是完全由一系列点的确定。我需要确定此Polygon是自相交;也就是说,如果任何多边形的边的交叉任何其它侧面的在点这不是一个顶点。有一种简单/快速的方法来计算呢?
I have a System.Windows.Shapes.Polygon object, whose layout is determined completely by a series of Points. I need to determine if this Polygon is self intersecting; i.e., if any of the sides of the polygon intersect any of the other sides at a point which is not a vertex. Is there an easy/fast way to compute this?
推荐答案
-
轻松,缓慢,低内存占用:比较对所有其他各段和检查路口。复杂的为O(n )的。
Easy, slow, low memory footprint: compare each segment against all others and check for intersections. Complexity O(n).
稍快,中期内存占用(改性以上版本):空间中的水桶的商店边,然后在每个桶基础上执行上述算法。复杂的为O(n / M)的的的 M 的桶(假设均匀分布)。
Slightly faster, medium memory footprint (modified version of above): store edges in spatial "buckets", then perform above algorithm on per-bucket basis. Complexity O(n / m) for m buckets (assuming uniform distribution).
快速和放大器;高内存占用:使用空间散列函数来边分割成桶。检查碰撞。复杂的 O(N)的。
Fast & high memory footprint: use a spatial hash function to split edges into buckets. Check for collisions. Complexity O(n).
快速和放大器;低内存占用:使用扫描线算法,如描述的的(或这里)。复杂的为O(n log n)的的
Fast & low memory footprint: use a sweep-line algorithm, such as the one described here (or here). Complexity O(n log n)
最后一个是我最喜欢的,因为它有良好的速度 - 内存平衡,尤其是宾利奥特曼算法 。实施是不是太复杂,无论是。
The last is my favorite as it has good speed - memory balance, especially the Bentley-Ottmann algorithm. Implementation isn't too complicated either.
这篇关于检查Polygon是自相交的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!