本文介绍了高斯数据的三项高斯拟合(p​​ython)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试使高斯数据适合特定的三项高斯(其中一项的幅度等于下一项的标准偏差的两倍).这是我的尝试:

I am trying to fit a gaussian data to a specific three-term gaussian (in which the amplitude in one term is equal to twice the standard deviation of the next term). Here is my attempt:

import numpy as np

#from scipy.optimize import curve_fit
import scipy.optimize as optimize

import matplotlib.pyplot as plt

#r=np.linspace(0.0e-15,4e-15, 100)

data = np.loadtxt('V_lambda_n.dat')
r = data[:, 0]
V = data[:, 1]

def func(x, ps1, ps2, ps3, ps4):
    return ps1*np.exp(-(x/ps2)**2) + ps2*np.exp(-(x/ps3)**2) + ps3*np.exp(-(x/ps4)**2)

popt, pcov = optimize.curve_fit(func, r, V, maxfev=10000)

#params = optimize.curve_fit(func, ps1, ps2, ps3, ps4)

#[ps1, ps2, ps2, ps4] = params[0]

p1=plt.plot(r, V, 'bo', label='data')
p2=plt.plot(r, func(r, *popt), 'r-', label='fit')

plt.xticks(np.linspace(0, 4, 9, endpoint=True))
plt.yticks(np.linspace(-50, 150, 9, endpoint=True))
plt.show()

这是结果:

如何修复此代码以提高匹配度?谢谢

How may I fix this code to improve the fit? Thanks

推荐答案

在scipy-user论坛的朋友的帮助下,我尝试了以下尝试:

With the help of friends from scipy-user forum, I tried as initial guess the following:

p0 = [V.max(),std_dev,V.max(),2]

p0=[V.max(), std_dev, V.max(), 2]

适合度提高了很多.新的拟合如图所示

The fit got a lot better. The new fit is as shown

在此处输入图片描述

我希望比以前更好.

这篇关于高斯数据的三项高斯拟合(p​​ython)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 04:02