本文介绍了如何在Matlab中制作高斯滤波器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我尝试在不使用 imfilter()
和 fspecial()
的情况下在 Matlab 中制作高斯滤波器.我已经尝试过这个,但结果与我使用 imfilter 和 fspecial 的结果不同.
I have tried to make a Gaussian filter in Matlab without using imfilter()
and fspecial()
.I have tried this but result is not like the one I have with imfilter and fspecial.
这是我的代码.
function Gaussian_filtered = Gauss(image_x, sigma)
% for single axis
% http://en.wikipedia.org/wiki/Gaussian_filter
Gaussian_filtered = exp(-image_x^2/(2*sigma^2)) / (sigma*sqrt(2*pi));
end
对于二维高斯,
function h = Gaussian2D(hsize, sigma)
n1 = hsize;
n2 = hsize;
for i = 1 : n2
for j = 1 : n1
% size is 10;
% -5<center<5 area is covered.
c = [j-(n1+1)/2 i-(n2+1)/2]';
% A product of both axes is 2D Gaussian filtering
h(i,j) = Gauss(c(1), sigma)*Gauss(c(2), sigma);
end
end
end
最后一个是
function Filtered = GaussianFilter(ImageData, hsize, sigma)
%Get the result of Gaussian
filter_ = Gaussian2D(hsize, sigma);
%check image
[r, c] = size(ImageData);
Filtered = zeros(r, c);
for i=1:r
for j=1:c
for k=1:hsize
for m=1:hsize
Filtered = Filtered + ImageData(i,j).*filter_(k,m);
end
end
end
end
end
但处理后的图像与输入图像几乎相同.我想知道最后一个函数 GaussianFiltered()
有问题...
But the processed image is almost same as the input image. I wonder the last function GaussianFiltered()
is problematic...
谢谢.
推荐答案
这里有一个替代方案:
创建二维高斯:
function f=gaussian2d(N,sigma)
% N is grid size, sigma speaks for itself
[x y]=meshgrid(round(-N/2):round(N/2), round(-N/2):round(N/2));
f=exp(-x.^2/(2*sigma^2)-y.^2/(2*sigma^2));
f=f./sum(f(:));
过滤后的图像,假设您的图像名为 Im
:
Filtered image, given your image is called Im
:
filtered_signal=conv2(Im,gaussian2d(N,sig),'same');
这里有一些情节:
imagesc(gaussian2d(7,2.5))
Im=rand(100);subplot(1,2,1);imagesc(Im)
subplot(1,2,2);imagesc(conv2(Im,gaussian2d(7,2.5),'same'));
这篇关于如何在Matlab中制作高斯滤波器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!