本文介绍了如何使用 Nucleo-F303K8 每 1us 进行一次 adc 转换?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我使用的是 STM32 Cube IDE.我现在尝试的是启用 TIM2 中的 MSM 和通道 1 上的 output_compare_no_output 并选择重置".作为触发事件.然后我转到 ADC1 并启用 Regular_Conversion_Mode,将 Number_Of_Conversions 设置为 1,将 External_Trigger_Conversion_Source 设置为 Timer 2 Trigger Out 事件.之后,我在循环模式下设置了一个 DMA,将半字推送到 RAM 缓冲区.为了测试,我将计时器的频率设置得低很多(10Hz),并在 ConvHalfCoplt 和 ConvCoplt 完成回调中通过 UART 从缓冲区发送一些 ADC 读数.但目前它不起作用.你能考虑一下我的方法中的任何错误吗?

Im using the STM32 Cube IDE. What I tried now is enable MSM in TIM2 and output_compare_no_output on Channel 1 and select "Reset" as the Trigger Event. Then I went to ADC1 and enabled Regular_Conversion_Mode, set Number_Of_Conversions to 1 and the External_Trigger_Conversion_Source to Timer 2 Trigger Out event. After that I set up a DMA in circular mode that pushes half-words to a RAM buffer. For testing I've set the frequency of the timer a lot lower (10Hz) and send some ADC readings from the buffer via UART in the ConvHalfCoplt and ConvCoplt complete callbacks. But at the moment it does not work. Can you think about any mistakes in my approach ?

#include "main.h"

#include <stdio.h>
#include <string.h>

#define ADC_BUF_LEN 4096
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac1_ch1;

TIM_HandleTypeDef htim2;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

uint8_t adc_buf[ADC_BUF_LEN];
char msg[16];

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM2_Init(void);

/* Private user code ---------------------------------------------------------*/

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* Configure the system clock */
  SystemClock_Config();

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART2_UART_Init();
  MX_ADC1_Init();
  MX_DAC1_Init();
  MX_TIM2_Init();
  /* USER CODE BEGIN 2 */

  HAL_TIM_Base_Start(&htim2);
  HAL_ADC_Start_DMA(&hadc1, (uint32_t*) adc_buf, ADC_BUF_LEN);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV16;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{
  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /** Common config
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_1;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief DAC1 Initialization Function
  * @param None
  * @retval None
  */

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 800 - 1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 1000 - 1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 38400;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel3_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);

  /*Configure GPIO pin : PB3 */
  GPIO_InitStruct.Pin = GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

// Called when first half of buffer is filled
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc){
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
  sprintf(msg, "%ho\r\n", adc_buf[0]);
  HAL_UART_Transmit(&huart2, (uint8_t*) msg, strlen(msg), HAL_MAX_DELAY);
}
// Called when buffer is completely filled
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
  sprintf(msg, "%ho\r\n", adc_buf[ADC_BUF_LEN / 2]);
  HAL_UART_Transmit(&huart2, (uint8_t*) msg, strlen(msg), HAL_MAX_DELAY);
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

##########################################################################老的:##########################################################################

##############################################################################Old:##############################################################################

到目前为止我尝试的是将 TIM2 配置为每微秒重置并在中断回调中开始转换:

What I tried so far is configuring TIM2 to reset every microsecond and start a conversion in the interupt callback:

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
  // Check which timer triggered this callback
  if (htim == &htim2){
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    adc_val = HAL_ADC_GetValue(&hadc1);
  }
}

但据我所知 PollForConversion 可能需要一些时间.

But as far as I know PollForConversion can take some time.

创建缓冲区并使用 DMA 不断地将数据从 ADC 传输到缓冲区并每微秒从那里读取一个值是否更好?我不会读旧"吗?数据那样?

Is it better to create a buffer and use DMA to constantly transfer data from the ADC to the buffer and read a value from there every microsecond ?Wouldn't I read "old" data that way ?

推荐答案

每 1us 运行一次 ADC 转换是一项颇具挑战性的任务,STM32F3 MCU 内核的最大运行速度为.仅"72MHz.因此,您应该仅使用硬件功能来解决此任务:

Running an ADC conversion every 1us is quite a challenging task, with the STM32F3 MCU core running at max. 72MHz "only". Therefore you should solve this task using hardware functionality only:

  1. 设置一个定时器,每1us创建一个触发输出事件(参见参考手册TIM控制寄存器主模式选择的说明).您的计时器可以在更新事件上生成触发输出,而不是生成中断:
    • TIM2_CR2中的主模式选择MSM设置为010(更新).
    • bit MSMTIM2_SMCR 应该保持在 0
  1. set up a timer to create a trigger output event every 1us (see description of Master mode selection in TIM control register of Reference Manual). Instead of generating an interrupt your timer can generate a trigger output on an update event:
    • set Master mode selection bits MSM in TIM2_CR2 to 010 (Update).
    • bit MSM in TIM2_SMCR should stay at 0
  • ADC1_CFGR
  • 中设置EXTEN01(硬件上升沿触发)
  • ADC1_CFGR
  • 中将EXTSEL设置为1011(TIM2_TRGO事件)
  • set EXTEN to 01 (HW trigger on rising edge) in ADC1_CFGR
  • set EXTSEL to 1011 (TIM2_TRGO event) in ADC1_CFGR

通过此设置,您可以使用所有 MCU 时钟周期来处理此设置中 ADC 生成的大量数据(1 MByte/s).您可以轮询 DMA 控制器以检查新数据,也可以使用 DMA 标志 Half Transfer CompleteTransfer Complete 在每次缓冲区填充一半时由 IRQ 通知使用新数据.

With this setup, you can use all MCU clock cycles on processing the large amount of data generated by the ADC in this setup (1 MByte / s). You can either poll the DMA controller to check for new data or use the DMA flags Half Transfer Complete and Transfer Complete to be notified by IRQ each time half of the buffer is filled with new data.

您将需要大量研究 ADC、定时器和 DMA 的文档才能运行此设置 - 但值得付出努力,因为它将巧妙地解决您的任务!

You will have to study the documentation of ADC, Timer and DMA quite a lot to get this setup running - but it is worth the effort since it will solve your task neatly!

这篇关于如何使用 Nucleo-F303K8 每 1us 进行一次 adc 转换?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-23 01:24
查看更多