问题描述
我有几个问题与下面的算法来判断一个数是素的,我也知道,随着筛埃拉托色尼的可以更快的响应。
I have several questions with the following algorithms to tell if a number is prime, I also know that with the sieve of Eratosthenes can be faster response.
- 为什么要快,计算
II * SQRT(N)
次。比的sqrt(N)
只是一个时间? - 为什么
的Math.sqrt()
比我的SQRT更快的()
的方法? -
什么是这些算法为O(n),O(开方(N)),O(N日志(N))?复杂
- Why is faster to compute
i i * sqrt (n)
times. thansqrt (n)
just one time ? - Why
Math.sqrt()
is faster than mysqrt()
method ? What is the complexity of these algorithms O (n), O (sqrt (n)), O (n log (n))?
public class Main {
public static void main(String[] args) {
// Case 1 comparing Algorithms
long startTime = System.currentTimeMillis(); // Start Time
for (int i = 2; i <= 100000; ++i) {
if (isPrime1(i))
continue;
}
long stopTime = System.currentTimeMillis(); // End Time
System.out.printf("Duracion: %4d ms. while (i*i <= N) Algorithm\n",
stopTime - startTime);
// Case 2 comparing Algorithms
startTime = System.currentTimeMillis();
for (int i = 2; i <= 100000; ++i) {
if (isPrime2(i))
continue;
}
stopTime = System.currentTimeMillis();
System.out.printf("Duracion: %4d ms. while (i <= sqrt(N)) Algorithm\n",
stopTime - startTime);
// Case 3 comparing Algorithms
startTime = System.currentTimeMillis();
for (int i = 2; i <= 100000; ++i) {
if (isPrime3(i))
continue;
}
stopTime = System.currentTimeMillis();
System.out.printf(
"Duracion: %4d ms. s = sqrt(N) while (i <= s) Algorithm\n",
stopTime - startTime);
// Case 4 comparing Algorithms
startTime = System.currentTimeMillis();
for (int i = 2; i <= 100000; ++i) {
if (isPrime4(i))
continue;
}
stopTime = System.currentTimeMillis();
System.out.printf(
"Duracion: %4d ms. s = Math.sqrt(N) while (i <= s) Algorithm\n",
stopTime - startTime);
}
public static boolean isPrime1(int n) {
for (long i = 2; i * i <= n; i++) {
if (n % i == 0)
return false;
}
return true;
}
public static boolean isPrime2(int n) {
for (long i = 2; i <= sqrt(n); i++) {
if (n % i == 0)
return false;
}
return true;
}
public static boolean isPrime3(int n) {
double s = sqrt(n);
for (long i = 2; i <= s; i++) {
if (n % i == 0)
return false;
}
return true;
}
public static boolean isPrime4(int n) {
// Proving wich if faster between my sqrt method or Java's sqrt
double s = Math.sqrt(n);
for (long i = 2; i <= s; i++) {
if (n % i == 0)
return false;
}
return true;
}
public static double abs(double n) {
return n < 0 ? -n : n;
}
public static double sqrt(double n) {
// Newton's method, from book Algorithms 4th edition by Robert Sedgwick
// and Kevin Wayne
if (n < 0)
return Double.NaN;
double err = 1e-15;
double p = n;
while (abs(p - n / p) > err * n)
p = (p + n / p) / 2.0;
return p;
}
}
这是我的code也链接: http://ideone.com/Fapj1P
This is the link of my code also: http://ideone.com/Fapj1P
推荐答案
1。为什么更快地计算I * I,开方(N)次。超过的sqrt(N)只是一个时间?
看看下面的复杂性。计算平方根的额外费用。
1. Why is faster to compute i*i, sqrt (n) times. than sqrt (n) just one time ?
Look at the complexities below. The additional cost of computing square root.
2。为什么的Math.sqrt()比我的sqrt()方法快?
的Math.sqrt()代表调用StrictMath.sqrt这是在硬件或本地code完成。
2. Why Math.sqrt() is faster than my sqrt() method ?
Math.sqrt() delegates call to StrictMath.sqrt which is done in hardware or native code.
3。什么是这些算法的复杂性?
您所描述的每个功能的复杂性
3. What is the complexity of these algorithms?
The complexity of each function you described
I = 2 ..我* I n种
O(开方(N))
I = 2 ..开方(N)
O(开方(N)*的log(n))
I = 2 ..开方(牛顿法)
O(开方(N))+ O(日志(N))
I = 2 ..开方(通过的Math.sqrt)
O(开方(N))
牛顿法的从
复杂性 http://en.citizendium.org/wiki/Newton%27s_method#Computational_complexity
Newton's method's complexity from
http://en.citizendium.org/wiki/Newton%27s_method#Computational_complexity
这篇关于为什么要乘以比服用平方根快很多倍?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!