问题描述
我很好奇地发现了assert_frame_equal
和equal
之间的区别.两者都用于检查两个数据的相等性.它适用于assert_series_equal
和assert_index_equal
.那么equals和测试函数之间有什么区别?
I'm curious to find the difference between assert_frame_equal
and equal
.Both are for checking the equality of two data. It applies for assert_series_equal
and assert_index_equal
. So what is the difference between equals and testing functions?
到目前为止,我发现测试功能为比较值(如check_dtpye
选项等)提供了更多的灵活性,并且不同于返回值,这是它们之间的唯一区别吗?
So far I found was testing functions gives little more flexibility to compare the values, like check_dtpye
options etc., and differs from returning values Is this the only difference between them?
否则,何时应该使用equals方法以外的测试功能?
or otherwise, When Should I use testing functions other than equals method?
df1=pd.DataFrame({'a':[1,2,3,4,5],'b':[6,7,8,9,10]})
df2=pd.DataFrame({'a':[1,2,3,4,5],'b':[6,7,8,9,10]})
pd.testing.assert_frame_equal(df1,df2)
print df1.equals(df2)
pd.testing.assert_series_equal(df1['a'],df2['a'])
print df1['a'].equals(df2['a'])
pd.testing.assert_index_equal(df1.index,df2.index)
print df1.index.equals(df2.index)
推荐答案
assert_frame_equal
引发AssertionError
.
pd.testing.assert_frame_equal(df1, df2) # no result - pass
pd.testing.assert_frame_equal(df1, pd.DataFrame()) # throws error - fail
# AssertionError
DataFrame.equals
只是返回布尔值True/False.
DataFrame.equals
simply returns a boolean True/False.
df1.equals(df2)
# True
df1.equals(pd.DataFrame())
# False
pd.testing
中定义的其他功能也是如此,这些功能用于开发用于熊猫代码的单元测试.
This is also the case for the other functions defined in pd.testing
, which are used to develop unit tests for pandas code.
这篇关于`assert_frame_equal`和`equals`有什么区别的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!