问题描述
从 CUDA 5.5 开始,CUBLAS 库包含用于批量矩阵分解和求逆的例程 (cublas<t>getrfBatched
和 cublas<t>getriBatched
).
Since CUDA 5.5, the CUBLAS library contains routines for batched matrix factorization and inversion (cublas<t>getrfBatched
and cublas<t>getriBatched
respectively).
从文档中获取指南,我使用这些例程编写了一个用于反转 N x N 矩阵的测试代码.仅当矩阵具有所有非零枢轴时,代码才会给出正确的输出.将任何枢轴设置为零会导致不正确的结果.我已经使用 MATLAB 验证了结果.
Getting guide from the documentation, I wrote a test code for inversion of an N x N matrix using these routines. The code gives correct output only if the matrix has all non zero pivots. Setting any pivot to zero results in incorrect results. I have verified the results using MATLAB.
我意识到我提供的是行主矩阵作为输入,而 CUBLAS 需要列主矩阵,但这并不重要,因为它只会转置结果.可以肯定的是,我还测试了列主要输入,但得到了相同的行为.
I realize that I am providing row major matrices as input while CUBLAS expects column major matrices, but it shouldn't matter as it would only transpose the result. To be sure, I also tested on column major input, but getting same behavior.
我很困惑,cublas<t>getrfBatched
期望枢轴交换信息数组 P
作为输入,这是 cublas<t>getrfBatched.因此,如果行交换消除了任何零枢轴,则反转例程应该自动处理它.
I am confused as,
cublas<t>getriBatched
expects pivot exchange information array P
as input, which is the output from cublas<t>getrfBatched
. So, if any zero pivots are eliminated by row exchange, then the inversion routine should handle it automatically.
如何使用 CUBLAS 对包含零枢轴的矩阵求逆?
How to perform inversion of matrices which contain a zero pivot using CUBLAS?
以下是一个具有不同测试用例的自包含可编译示例:
Following is a self contained compile-able example with different test cases:
#include <cstdio>
#include <cstdlib>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#define cudacall(call)
do
{
cudaError_t err = (call);
if(cudaSuccess != err)
{
fprintf(stderr,"CUDA Error:
File = %s
Line = %d
Reason = %s
", __FILE__, __LINE__, cudaGetErrorString(err));
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
while (0)
#define cublascall(call)
do
{
cublasStatus_t status = (call);
if(CUBLAS_STATUS_SUCCESS != status)
{
fprintf(stderr,"CUBLAS Error:
File = %s
Line = %d
Code = %d
", __FILE__, __LINE__, status);
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
while(0)
void invert_device(float* src_d, float* dst_d, int n)
{
cublasHandle_t handle;
cublascall(cublasCreate_v2(&handle));
int batchSize = 1;
int *P, *INFO;
cudacall(cudaMalloc<int>(&P,n * batchSize * sizeof(int)));
cudacall(cudaMalloc<int>(&INFO,batchSize * sizeof(int)));
int lda = n;
float *A[] = { src_d };
float** A_d;
cudacall(cudaMalloc<float*>(&A_d,sizeof(A)));
cudacall(cudaMemcpy(A_d,A,sizeof(A),cudaMemcpyHostToDevice));
cublascall(cublasSgetrfBatched(handle,n,A_d,lda,P,INFO,batchSize));
int INFOh = 0;
cudacall(cudaMemcpy(&INFOh,INFO,sizeof(int),cudaMemcpyDeviceToHost));
if(INFOh == n)
{
fprintf(stderr, "Factorization Failed: Matrix is singular
");
cudaDeviceReset();
exit(EXIT_FAILURE);
}
float* C[] = { dst_d };
float** C_d;
cudacall(cudaMalloc<float*>(&C_d,sizeof(C)));
cudacall(cudaMemcpy(C_d,C,sizeof(C),cudaMemcpyHostToDevice));
cublascall(cublasSgetriBatched(handle,n,A_d,lda,P,C_d,lda,INFO,batchSize));
cudacall(cudaMemcpy(&INFOh,INFO,sizeof(int),cudaMemcpyDeviceToHost));
if(INFOh != 0)
{
fprintf(stderr, "Inversion Failed: Matrix is singular
");
cudaDeviceReset();
exit(EXIT_FAILURE);
}
cudaFree(P), cudaFree(INFO), cublasDestroy_v2(handle);
}
void invert(float* src, float* dst, int n)
{
float* src_d, *dst_d;
cudacall(cudaMalloc<float>(&src_d,n * n * sizeof(float)));
cudacall(cudaMemcpy(src_d,src,n * n * sizeof(float),cudaMemcpyHostToDevice));
cudacall(cudaMalloc<float>(&dst_d,n * n * sizeof(float)));
invert_device(src_d,dst_d,n);
cudacall(cudaMemcpy(dst,dst_d,n * n * sizeof(float),cudaMemcpyDeviceToHost));
cudaFree(src_d), cudaFree(dst_d);
}
void test_invert()
{
const int n = 3;
//Random matrix with full pivots
float full_pivots[n*n] = { 0.5, 3, 4,
1, 3, 10,
4 , 9, 16 };
//Almost same as above matrix with first pivot zero
float zero_pivot[n*n] = { 0, 3, 4,
1, 3, 10,
4 , 9, 16 };
float zero_pivot_col_major[n*n] = { 0, 1, 4,
3, 3, 9,
4 , 10, 16 };
float another_zero_pivot[n*n] = { 0, 3, 4,
1, 5, 6,
9, 8, 2 };
float another_full_pivot[n * n] = { 22, 3, 4,
1, 5, 6,
9, 8, 2 };
float singular[n*n] = {1,2,3,
4,5,6,
7,8,9};
//Select matrix by setting "a"
float* a = zero_pivot;
fprintf(stdout, "Input:
");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
fprintf(stdout,"%f ",a[i*n+j]);
fprintf(stdout,"
");
}
fprintf(stdout,"
");
invert(a,a,n);
fprintf(stdout, "Inverse:
");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
fprintf(stdout,"%f ",a[i*n+j]);
fprintf(stdout,"
");
}
}
int main()
{
test_invert();
int n; scanf("%d",&n);
return 0;
}
推荐答案
cublas<t>getrfBatched
的当前 CUBLAS 库实现中似乎存在一个错误,用于维度矩阵(n
) 这样 3<=n<=16
,当你说有一个零枢轴"时.
There seems to be a bug in the current CUBLAS library implementation of
cublas<t>getrfBatched
for matrices of dimension (n
) such that 3<=n<=16
, when there is a "zero pivot" as you say.
一种可能的解决方法是在 nA
矩阵身份扩展"到 17x17 的大小(使用 matlab 命名法):
A possible workaround is to "identity-extend" your A
matrix to be inverted, when n<17, to a size of 17x17 (using matlab nomenclature):
LU = getrf( [A 0 ; 0 I]);
接着,您可以以普通"方式使用 cublas<t>getriBatched
:
continuing, you can then use cublas<t>getriBatched
in an "ordinary" fashion:
invA = getri( LU(1:3,1:3) )
(您也可以将所有内容保留在 n=17,以这种方式调用 getri
,然后将结果提取为 invA
的前 3x3 行和列.)
(You can also leave everything at n=17, call getri
that way, and then extract the result as the first 3x3 rows and columns of invA
.)
这是一个完整的示例,借用您提供的代码,显示您提供的 3x3 zero_pivot
矩阵的反转,使用 zero_pivot_war
矩阵作为身份-扩展"解决方法:
Here is a fully worked example, borrowing from the code you supplied, showing the inversion of your supplied 3x3 zero_pivot
matrix, using the zero_pivot_war
matrix as an "identity-extended" workaround:
$ cat t340.cu
#include <cstdio>
#include <cstdlib>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#define cudacall(call)
do
{
cudaError_t err = (call);
if(cudaSuccess != err)
{
fprintf(stderr,"CUDA Error:
File = %s
Line = %d
Reason = %s
", __FILE__, __LINE__, cudaGetErrorString(err));
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
while (0)
#define cublascall(call)
do
{
cublasStatus_t status = (call);
if(CUBLAS_STATUS_SUCCESS != status)
{
fprintf(stderr,"CUBLAS Error:
File = %s
Line = %d
Code = %d
", __FILE__, __LINE__, status);
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
while(0)
void invert_device(float* src_d, float* dst_d, int n)
{
cublasHandle_t handle;
cublascall(cublasCreate_v2(&handle));
int batchSize = 1;
int *P, *INFO;
cudacall(cudaMalloc<int>(&P,17 * batchSize * sizeof(int)));
cudacall(cudaMalloc<int>(&INFO,batchSize * sizeof(int)));
int lda = 17;
float *A[] = { src_d };
float** A_d;
cudacall(cudaMalloc<float*>(&A_d,sizeof(A)));
cudacall(cudaMemcpy(A_d,A,sizeof(A),cudaMemcpyHostToDevice));
cublascall(cublasSgetrfBatched(handle,17,A_d,lda,P,INFO,batchSize));
int INFOh = 0;
cudacall(cudaMemcpy(&INFOh,INFO,sizeof(int),cudaMemcpyDeviceToHost));
if(INFOh == 17)
{
fprintf(stderr, "Factorization Failed: Matrix is singular
");
cudaDeviceReset();
exit(EXIT_FAILURE);
}
float* C[] = { dst_d };
float** C_d;
cudacall(cudaMalloc<float*>(&C_d,sizeof(C)));
cudacall(cudaMemcpy(C_d,C,sizeof(C),cudaMemcpyHostToDevice));
cublascall(cublasSgetriBatched(handle,n,A_d,lda,P,C_d,n,INFO,batchSize));
cudacall(cudaMemcpy(&INFOh,INFO,sizeof(int),cudaMemcpyDeviceToHost));
if(INFOh != 0)
{
fprintf(stderr, "Inversion Failed: Matrix is singular
");
cudaDeviceReset();
exit(EXIT_FAILURE);
}
cudaFree(P), cudaFree(INFO), cublasDestroy_v2(handle);
}
void invert(float* src, float* dst, int n)
{
float* src_d, *dst_d;
cudacall(cudaMalloc<float>(&src_d,17 * 17 * sizeof(float)));
cudacall(cudaMemcpy(src_d,src,17 * 17 * sizeof(float),cudaMemcpyHostToDevice));
cudacall(cudaMalloc<float>(&dst_d,n * n * sizeof(float)));
invert_device(src_d,dst_d,n);
cudacall(cudaMemcpy(dst,dst_d,n * n * sizeof(float),cudaMemcpyDeviceToHost));
cudaFree(src_d), cudaFree(dst_d);
}
void test_invert()
{
const int n = 3;
//Random matrix with full pivots
/* float full_pivots[n*n] = { 0.5, 3, 4,
1, 3, 10,
4 , 9, 16 };
//Almost same as above matrix with first pivot zero
float zero_pivot[n*n] = { 0, 3, 4,
1, 3, 10,
4 , 9, 16 };
float zero_pivot_col_major[n*n] = { 0, 1, 4,
3, 3, 9,
4 , 10, 16 };
*/
float zero_pivot_war[17*17] = {
0,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,3,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
4,9,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 };
/*
float another_zero_pivot[n*n] = { 0, 3, 4,
1, 5, 6,
9, 8, 2 };
float another_full_pivot[n * n] = { 22, 3, 4,
1, 5, 6,
9, 8, 2 };
float singular[n*n] = {1,2,3,
4,5,6,
7,8,9};
*/
float result[n*n];
//Select matrix by setting "a"
float* a = zero_pivot_war;
fprintf(stdout, "Input:
");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
fprintf(stdout,"%f ",a[i*17+j]);
fprintf(stdout,"
");
}
fprintf(stdout,"
");
invert(a,result,n);
fprintf(stdout, "Inverse:
");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
fprintf(stdout,"%f ",result[i*n+j]);
fprintf(stdout,"
");
}
}
int main()
{
test_invert();
// int n; scanf("%d",&n);
return 0;
}
$ nvcc -arch=sm_20 -o t340 t340.cu -lcublas
$ cuda-memcheck ./t340
========= CUDA-MEMCHECK
Input:
0.000000 3.000000 4.000000
1.000000 3.000000 10.000000
4.000000 9.000000 16.000000
Inverse:
-0.700000 -0.200000 0.300000
0.400000 -0.266667 0.066667
-0.050000 0.200000 -0.050000
========= ERROR SUMMARY: 0 errors
$
根据一个简单的测试,上述结果在我看来是正确的 其他地方.
The above result appears to me to be correct based on a simple test elsewhere.
关于 CUBLAS 中可能存在的错误的性质,我没有任何进一步的技术细节.据我所知,它存在于 CUDA 5.5 和 CUDA 6.0 RC 中.NVIDIA 提供的资产(例如 CUBLAS 库)的详细错误讨论应在 NVIDIA 开发者论坛 或直接进行在 developer.nvidia.com 上的错误提交门户(您必须是注册开发人员才能提交错误).
I don't have any further technical details about the nature of the possible bug in CUBLAS. From what I can tell, it is present in both CUDA 5.5 and CUDA 6.0 RC. Detailed bug discussions for NVIDIA-supplied assets (e.g. CUBLAS library) should be taken up on the NVIDIA developer forums or directly at the bug filing portal on developer.nvidia.com (you must be a registered developer to file a bug).
这篇关于CUBLAS:零枢轴矩阵的不正确反转的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!